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Background: HIV molecular epidemiology is increasingly integrated into public health
prevention. We conducted cluster typing to enhance characterization of a densely
sampled statewide epidemic towards informing public health.

Methods: We identified HIV clusters, categorized them into types, and evaluated their
dynamics between 2004 and 2019 in Rhode Island. We grouped sequences by
diagnosis year, assessed cluster changes between paired phylogenies, t0 and t1,
representing adjacent years and categorized clusters as stable (cluster in t0 phylogeny
¼ cluster in t1 phylogeny) or unstable (cluster in t0 6¼ cluster in t1). Unstable clusters
were further categorized as emerging (t1 phylogeny only) or growing (larger in t1
phylogeny). We determined proportions of each cluster type, of individuals in each
cluster type, and of newly diagnosed individuals in each cluster type, and assessed
trends over time.

Results: A total of 1727 individuals with available HIV-1 subtype B pol sequences were
diagnosed in Rhode Island by 2019. Over time, stable clusters and individuals in them
dominated the epidemic, increasing over time, with reciprocally decreasing unstable
clusters and individuals in them. Conversely, proportions of newly diagnosed individu-
als in unstable clusters significantly increased. Within unstable clusters, proportions of
emerging clusters and of individuals in them declined; whereas proportions of newly
diagnosed individuals in growing clusters significantly increased over time.

Conclusion: Distinct molecular cluster types were identified in the Rhode Island
epidemic. Cluster dynamics demonstrated increasing stable and decreasing unstable
clusters driven by growing, rather than emerging clusters, suggesting consistent in-state
transmission networks. Cluster typing could inform public health beyond conventional
approaches and direct interventions.
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Introduction

Identification and characterization of molecular HIV
clusters is increasingly used to understand structure and
dynamics of transmission networks, identify transmission
outbreaks in real-time, estimate transmission rates, project
averted infections and inform epidemiology and preven-
tion [1–12]. Utilizing HIV-1 pol sequences generated
through routine drug resistance screening, outcomes of
such studies help characterize HIV clustering and reveal
dynamics of HIV transmission networks.

Transmission networks research has been informative in
characterizing HIV epidemics. For example, early-stage
HIV infections are more likely to be found in clusters
[13], epidemiological and molecular surveillance could be
synergistic [14], high density of sampling can improve
cluster detection [15–18] and novel parameters, such as a
network-based risk score, could help better characterize
transmission networks [19]. Notably, analysis and
prediction of growing clusters over time are of particular
interest [20] as they could help identify high-priority
groups, enhance prevention efforts, and enable prediction
of increased transmission in a population [2,15,20–25].
Moreover, such clusters have a mean transmission rate
eight times the national average in the United States [23]
and their identification could provide further opportunity
for public health interventions to interrupt new HIV
transmissions [15,20,21,23–27].

Despite recent advances, it remains elusive whether and
how HIV-1 clustering results could be translated into
actionable public health interventions, beyond outbreak
investigations, to prevent new HIV infections in real time.
Molecular HIV clusters are typically characterized by
cluster size or by traits of cluster members, such as risk
factors, sociodemographics features, drug resistance,
geography, and recency of infection. Common outcomes
of cluster analyses [1,2,5,10], including HIV outbreaks
[8,9], are usually binary, that is ‘clustered’ or ‘not
clustered’, while potential qualitative and/or quantitative
differences between clusters or their stability over time are
not typically considered, particularly in real-life epi-
demics. Other than growing clusters, types of molecular
HIV clusters are understudied, and their role in
characterizing an epidemic remains unclear. Compre-
hensive longitudinal categorization of cluster types, or
cluster typing, could increase the granularity of under-
standing transmission networks and viral spread mecha-
nisms, and enhance the use of molecular HIV clusters to
inform and impact public health activities and targeted
deployment of resources.

According to the Rhode Island Department of Health
[28], 2674 Rhode Islanders were diagnosed and living
with HIV through the end of 2018; 91% were infected via
sexual contact and 55% of newly diagnosed cases are gay,
bisexual, or other MSM; and 89% of those with HIV
 Copyright © 2021 Wolters Kluwer H
know their status, 74% are engaged in care, and 69% are
virally suppressed. In previous studies, we and others
addressed patterns and trends of the Rhode Island HIV-1
epidemic including epidemiology [29–33], prevention
among high-risk groups [34–44] and adolescents [45–
47], co-infections [48–50], drug resistance [29,30,51–
53] and transmission networks [21].

In this study, we conduct cluster typing to characterize a
real-life, densely sampled statewide HIV-1 epidemic,
assess trends of different cluster types over time and discuss
the potential impact of cluster typing, as an extended tool
of molecular epidemiology. We hypothesize that cluster
typing could assist in better understanding the local
epidemic and its dynamics, which could inform public
health to design targeted interventions.
Methods

HIV-1 sequences and associated data
Analyses included all available HIV-1 sequences that were
ever obtained for drug resistance testing as part of routine
clinical care of individuals with HIV residing in Rhode
Island and in care at the adult Immunology Center or
pediatric Hasbro Clinic, the two largest HIV Centers in
Rhode Island, which serve �80% of the state’s HIV
population [21,51,54]. Demographic, clinical, and
laboratory de-identified data were obtained from
individuals’ clinical charts, collected through routine
clinical care, and included age, gender, race, ethnicity,
behavior risk factors, and country of birth. Sequencing of
partial HIV-1 pol was performed at certified commercial
laboratories by Sanger sequencing. Additional sequence
quality assessment was performed using SQUAT [55] and
Stanford Database tools [56,57]. Multiple sequence
alignment was generated by mafft v7.450 [58]. HIV-1
subtyping was performed by using REGA [59], COMET
[60], and RIP [61,62] with minor discrepancies resolved
on a case-by-case basis. HIV-1 subtype B pol sequences
(HXB2 nucleotide positions 2253–3554; earliest single
sequence per person) from individuals with a known year
of HIV-1 diagnosis were included in the analyses. The
study was approved by, and a consent waiver was obtained
from, the Institutional Review Board at The Miriam
Hospital, Providence, Rhode Island.

Identification of molecular HIV clusters
Viral sequences were grouped cumulatively by year of
HIV-1 diagnosis. Molecular HIV clusters were identified
in each annual sequence dataset by combining Maximum
Likelihood phylogeny (RAxML v.8.10.2 [63,64] using
GTRCAT model and fast bootstrap) with mean pairwise
distance thresholds. To assess whether stringency of
thresholds for inferring clusters affects cluster typing
outcomes, we performed a sensitivity analysis by using the
following four criteria, covering a broad range of
ealth, Inc. All rights reserved.
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commonly used thresholds [65]: bootstrap support of at
least 0.95 with mean pairwise TN93 distance threshold of
0.015 substitutions per site or less; bootstrap support of at
least 0.90 with mean pairwise distance threshold of
0.030 substitutions/site or less; bootstrap support
of at least 0.85 with mean pairwise distance threshold
of 0.030 substitutions/site or less; and bootstrap support
of at least 0.80 with mean pairwise distance threshold of
0.045 substitutions/site or less.

Cluster typing
We defined cluster types by tracking the evolution of
molecular HIV clusters over time, between pairs of
adjacent annual sequence datasets, and over time. After
grouping sequences by year of HIV-1 diagnosis and
identifying clusters in each annual dataset (by each of the
four cluster definition criteria outlined above), we
compared clusters in each of the 16 pairs of phylogenies,
each pair representing adjacent years between 2003 and
2019. The earlier phylogeny in each pair was designated t0
and the later phylogeny t1. Changes in the composition
and structure of clusters between each t0 and t1
phylogenies were identified (e.g. clusters identified in
the 2004 phylogeny vs. clusters in the 2003 phylogeny;
2005 vs. 2004; 2006 vs. 2005, etc.). Differences between
the t0 and t1 phylogenies in each pair resulted from newly
diagnosed cases in the t1 phylogeny (Fig. 1). Derived
cluster types were defined as either stable, that is, the same
cluster detected in both the t0 and t1 phylogenies; or
unstable, that is, the cluster in the t1 phylogeny was not
the same as in the t0 phylogeny. Unstable clusters were
further categorized as emerging, that is, identified in the
t1 phylogeny only; growing, that is, increased in size in the
t1 phylogeny as compared with the t0 phylogeny;
merging, that is, multiple clusters detected in the t0
phylogeny that merged in the t1 phylogeny), growing-
merging, lost, and reduced clusters (schematically shown
in Fig. 1). Cluster types were summarized per each pair of
phylogenies, t0 and t1. For each cluster type, three major
outcome measures were assessed: proportion of each
cluster type of the total identified clusters in the t1
phylogeny; proportion of individuals in each cluster type
of the total individuals in clusters in the t1 phylogeny; and
proportion of newly diagnosed individuals in each cluster
type of the total newly diagnosed individuals with
sequences in the t1 phylogeny. As per definition, stable
clusters did not include newly diagnosed individuals,
proportions of newly diagnosed individuals in stable
clusters were not assessed. Lastly, we determined trends
over time for all outcome measures.

Inference about time trends
To quantify time-trends in cluster types, we calculated the
Mann Kendall statistic. This statistic uses all pairs of
distinct years and calculates the difference between the
proportion of pairs with an increase in the cluster type
(i.e. the proportion of the cluster type is higher in the
more recent year) and the proportion of pairs with a
 Copyright © 2021 Wolters Kluwe
decrease in the cluster type (i.e. the proportion of the
cluster type is lower in the more recent year). A Mann
Kendall statistic of 1 indicates an increase in the
proportion of the cluster type for the whole time period
and a Mann Kendall statistic of �1 indicates a decrease in
the proportion of the clustering type for the whole time
period. For confidence interval construction and
hypothesis testing, the variance of the Mann Kendall
statistic was estimated using a block bootstrap with block
size of four and 10 000 bootstrap replicates [66]. The
block bootstrap was used to account for potential
autocorrelation. To ensure that the confidence intervals
fall between �1 and 1, the confidence intervals are based
on the log(�log((xþ1)/2)) transformation. Confidence
intervals cannot be calculated when the Mann Kendall
statistic is equal to 1 or�1, and are therefore not reported.
We used local polynomial regression to plot trends over
time in the proportions of different cluster types and to
calculate associated pointwise confidence intervals.
Confidence intervals cannot be calculated when the
observed proportion is equal to 0 or 1, and are therefore,
not reported. To ensure that the confidence intervals for
the proportions fall between 0 and 1 a log(�log(x))
transformation was used. To account for that different
number of sequences were used to build the different
phylogenies, the analysis was weighted by the inverse of
the standard deviation of the proportion estimator. As we
do not account for multiple comparisons, the P values
reported here can be viewed as descriptive statistics
quantifying degree of statistical association and inferences
about time trends should be considered exploratory.
Results

HIV-1 diagnoses in Rhode Island and study
dataset
According to the Rhode Island Department of Health,
the annual number of new HIV-1 diagnoses in the state
ranged from 24 in 1984, increased sharply during the late
1980s, peaked to 307 in 1990, and had a steep decline by
1995 with a more steady decline over the last 25 years to
73 in 2019 (Supplementary Figure S1; green line, http://
links.lww.com/QAD/C150). The annual proportions of
individuals with available sequences out of all individuals
with HIV increased throughout the years from a median
of 30% (IQR 19–40%) during 1984–2003 to 73% (IQR
69–81%) during 2004–2019 because of increased routine
pre-antiretroviral therapy (ART) resistance testing. To
minimize sampling bias, all cluster typing analyses in this
study were, therefore, performed for the 2003/2004–
2018/2019 data sets (Supplementary Figure S1; to the
right of the vertical dashed line, http://links.lww.com/
QAD/C150), during which the gap between newly
HIV-diagnosed individuals and those with no sequence
data was smaller and relatively stable.
r Health, Inc. All rights reserved.
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Fig. 1. Cluster typing concept. The cluster typing concept and the relevant clusters that are being considered in analyses are
presented. Two schematic phylogenies, at t0 (left) and at t1 (right) are shown, representing two annual sequence datasets of any
adjacent years (e.g. 2003 and 2004, 2004 and 2005, etc.). The t1 phylogeny includes the same sequences as the t0 phylogeny, plus
three cases of newly diagnosed individuals in t1 (p-15, p-18, and p-30, shown in red). Identified clusters (as defined in Methods) are
outlined by black circles at the relevant ancestral nodes, also highlighted by blue (stable clusters) or red (unstable clusters) clouds
in the t1 phylogeny. Nodes without circles represent nonclustered sequences according to the cluster definition criteria, and are
outlined by green clouds. Different cluster types resulting from changes between the t0 and t1 phylogenies are shown by arrows
between the two trees.
Of a total of 2149 available sequences by the end of 2019
(single earliest sequence per person), 90% (n¼ 1936)
were HIV-1 subtype B and 10% (n¼ 213) non-B subtypes
(Supplementary Figure S1; gray and pink lines, http://
links.lww.com/QAD/C150). As no clustering is
expected between HIV-1 subtypes, and the non-B
sequence data were relatively few, only HIV-1 subtype
B sequences with documented year of HIV-1 diagnosis
were included in this study (693 sequences from people
diagnosed by 2003 and 1034 sequences from people
diagnosed between 2004 and 2019). Among the 1727
 Copyright © 2021 Wolters Kluwer H
individuals with HIV-1 subtype B, median age at
diagnosis was 33 years (IQR 26–42 years), 75% were
men (68% of those MSM), 29% were Hispanics, 27%
black or African-American, and 66% white, 21% used
illegal substances or injected nonprescription drugs, 10%
had a history of being incarcerated, 43% had mental
illnesses, and 71% were born in the USA.

Molecular HIV clusters in Rhode Island
The annual numbers of identified clusters, proportion of
individuals in clusters out of total individuals, and
ealth, Inc. All rights reserved.
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proportion of newly diagnosed individuals in clusters out
of total newly diagnosed individuals had all significantly
increased from 2004 to 2019 by all four cluster definition
criteria, though with occasional plateauing and fluctua-
tions (Supplementary Figure S2, http://links.lww.com/
QAD/C151). Depending on the criteria, of 693
sequences available by 2003, 4–15% were in 15–43
clusters of size 2–9; and of 1727 sequences available by
2019, 26–45% were in 147–195 clusters of size 2–41
(Supplementary Figure S2, http://links.lww.com/QAD/
C151).
 Copyright © 2021 Wolters Kluwe
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Cluster typing: stable clusters
Cluster types were identified in 16 pairs of adjacent
year phylogenies between 2003/2004 and 2018/2019.
Stable clusters between adjacent year pairs dominated
in the HIV-1 Rhode Island epidemic. Proportions of
stable clusters (out of the total identified clusters)
demonstrated a statistically significant increase over
time, irrespective of cluster definition criteria (Fig. 2a;
Mann Kendall statistic 0.79–0.87; P values 0.003–
0.005), ranging from 54 to 63% in 2003/2004 to 91 to
92% in 2018/2019.
r Health, Inc. All rights reserved.
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Similar trends were observed for the proportion of
individuals in stable clusters (out of the number of all
individuals in clusters; Fig. 2b; Mann Kendall statistic
0.68–0.75; P values 0.008–0.012). Proportions increased
by more than 20% at all cluster definition criteria, ranging
from 52 to 56% in 2003/2004 to 78 to 82% in 2018/2019.

Cluster typing: unstable clusters
Given that the proportion of stable clusters increased
through time, the proportion of unstable clusters (out of
the total identified clusters; reciprocal to the proportion
of stable clusters) showed a statistically significant decrease
over time across all analyzed cluster definition criteria
(Fig. 3a; Mann Kendall statistic from �0.87 to �0.79; P
values 0.003–0.006). Between 2003/2004 and 2018/
2019, the range of proportions of unstable clusters
decreased from 37–46% to 8–9%.

Trends in proportions of individuals in unstable clusters
(out of the total number of clustered individuals;
reciprocal to the proportion of individuals in stable
clusters) similarly decreased over time (Fig. 3b; Mann
Kendall statistic from �0.75 to �0.68; P values 0.008–
0.014). Between 2003/2004 and 2018/2019, the range of
proportions of individuals in unstable clusters decreased
from 44–48% to 18–22%.

In contrast to these declining trends, the proportions of
newly diagnosed individuals in unstable clusters (out of
the total number of newly diagnosed individuals with
sequences) demonstrated significant increases at all
analyzed cluster definition criteria (Fig. 3c; Mann Kendall
statistic 0.52–0.58; P values 0.005–0.008). Three of four
criteria produced similar proportions, increasing from
29–33% in 2003/2004 to 75–81% in 2018/2019,
respectively. The most strict cluster definition criteria
produced a curve that was similar in shape (Mann Kendall
statistic 0.52; P value 0.006) but had lower values and
increased from 20% in 2003/2004 to 58% in 2018/2019.

Cluster typing: emerging clusters
To better understand the composition of the unstable
clusters, we further categorized them to different cluster
types. Between 2003/2004 and 2018/2019, the propor-
tions of emerging clusters (out of the total number of
clusters) decreased from 27–46% to 2–4%, demonstrating
a significant decline (Fig. 4a; Mann Kendall statistic
�0.80 to �0.75; P values 0.006–0.010).

The proportion of individuals in emerging clusters (out of
all individuals in clusters) showed similar trends and
decreased from 23–48 to 2–3% (Fig. 4b; Mann Kendall
statistic �0.77 to �0.75; P values 0.006–0.011).
However, the proportions of newly diagnosed individuals
in emerging clusters (out of the total number of newly
diagnosed individuals with sequences) demonstrated
fluctuating, wave-like patterns with overall stability
(�20%) and nonsignificant trends over time (Fig. 4c;
 Copyright © 2021 Wolters Kluwer H
Mann Kendall statistic �0.28 to �0.03; P values 0.073–
0.855).

Cluster typing: growing clusters
Growing clusters, another category of unstable clusters,
demonstrated slight increase in their proportions out of
the number of identified clusters between 2003/2004 and
2008/2009 followed by slow gradual decline over the last
decade (Fig. 5a; Mann Kendall statistic�0.53 to�0.21; P
values 0.053–0.332). Proportions of growing clusters
increased from 0–14% in 2003/2004 to 12–15% in 2009/
2010 followed by decline to 5% by 2018/2019.

The proportions of individuals in growing clusters (out of
the total number of clustered individuals) demonstrated
similarly shaped and nonsignificant trends (Fig. 5b; Mann
Kendall statistic �0.40 to �0.05; P values 0.114–0.805).
Proportions increased from 0–21% in 2003/2004 to 25–
31% in 2007–2009 and then dropped to 15–20%
by 2019.

In contrast, the proportions of newly diagnosed
individuals in growing clusters (out of the total number
of newly diagnosed individuals with sequences) showed
steady increases between 2003/2004 and 2018/2019
(Fig. 5c; Mann Kendall statistic 0.68–0.77; P values
0.003–0.006). Despite some year-to-year fluctuations,
the proportion of newly diagnosed individuals in growing
clusters increased from 0–10 to 33–55% at the different
cluster definition criteria.

We did not see statistical evidence to support existence of
any other unstable cluster types, such as, merging,
growing-merging, lost, and reduced clusters.
Discussion

We identified distinct types of molecular HIV-1 clusters
and used them to longitudinally characterize a real life,
densely sampled statewide HIV epidemic during 2004–
2019. The steady decline of newly diagnosed individuals
in Rhode Island during that time was accompanied by
increasing number of identified clusters and proportions
of individuals in clusters and of newly diagnosed
individuals in clusters. The proportion of stable clusters
of all clusters increased over time and dominated the
epidemic, suggesting good overall control. In contrast,
proportion of newly diagnosed individuals in growing,
rather than other types of unstable clusters steadily
increased over the same time period. Cluster typing
could, therefore, help to more comprehensively charac-
terize transmission network dynamics in a statewide
epidemic and provide more granular understanding of
viral spread mechanisms by categorization of clusters and
individuals in them. These data can be incorporated in
and guide routine public health activities and be
ealth, Inc. All rights reserved.
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Fig. 3. Cluster typing: trends in proportion of unstable clusters over time. For details see Fig. 2 legend. (a) Proportions and 95%
CIs of unstable clusters out of total clusters. (b) Proportions and 95% CIs of individuals in unstable clusters out of total individuals
with sequences. (c) Proportions and 95% CIs of newly diagnosed individuals in unstable clusters out of total number of newly
diagnosed individuals with sequences. CI, confidence interval.



 Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

1718 AIDS 2021, Vol 35 No 11

B
oo

ts
tra

p

TN
93

di
st

an
ce

s

≥0.80
≥0.85
≥0.90
≥0.95

≤0.045
≤0.030
≤0.030
≤0.015

Mann
Kendall
statistic

95% CI’s

Mann Kendall test

-0.26 -0.61 ‒ 0.09
-0.28
-0.20
-0.03

-0.59 ‒ 0.04
-0.53 ‒ 0.12
-0.31 ‒ 0.23

B
oo

ts
tra

p

TN
93

di
st

an
ce

s

≥0.80
≥0.85
≥0.90
≥0.95

≤0.045
≤0.030
≤0.030
≤0.015

Mann
Kendall
statistic

95% CI’s

Mann Kendall test

-0.77 -0.99 ‒ -0.18
-0.77
-0.77
-0.75

-0.99 ‒ -0.18
-0.99 ‒ -0.22
-0.99 ‒ -0.15

B
oo

ts
tra

p

TN
93

di
st

an
ce

s

≥0.80
≥0.85
≥0.90
≥0.95

≤0.045
≤0.030
≤0.030
≤0.015

Mann
Kendall
statistic

95% CI’s

Mann Kendall test

-0.80 -0.99 ‒ -0.21
-0.79
-0.75
-0.76

-0.99 ‒ -0.22
-0.98 ‒ -0.20
-0.99 ‒ -0.16

Emerging clusters

Newly diagnosed individuals in emerging clusters

Individuals in emerging clusters

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20182003t  : 0
t  : 1

Pairs of years
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20182003t  : 0
t  : 1

Pairs of years
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20182003t  : 0
t  : 1

Pairs of years
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

P
ro

po
rti

on
s 

an
d 

95
%

 C
Is

, %
P

ro
po

rti
on

s 
an

d 
95

%
 C

Is
, %

P
ro

po
rti

on
s 

an
d 

95
%

 C
I s

, %

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

(a)

(b)

(c)

Fig. 4. Cluster typing: trends in proportion of emerging clusters over time. For details see Fig. 2 legend. (a) Proportions and 95%
CIs of emerging clusters out of total clusters. (b) Proportions and 95% CIs of individuals in emerging clusters out of total individuals
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integrated into partner services to prevent HIV
transmissions.

Though the significance and benefit of molecular cluster
typing needs to be demonstrated as well as validated in
other populations, we demonstrate that it might identify
new and important epidemiological dynamics. HIV-1
molecular clusters are not all equal, yet are commonly
treated as such, partly because of cross-sectional rather
than longitudinal analyses. Some clusters are stable over
time, which might indicate low likelihood of future
activity, represent an extinct viral lineage or transmission
chain, and therefore, require less public health attention.
Other clusters are changing over time, which might
require better consideration for intervention. For
example, detection of an unstable cluster might trigger
targeted contact tracing services towards cluster members
or their contacts, who might be out of care, not on ART,
not virologically suppressed, undiagnosed, or at high risk
for HIV acquisition.

The dominance and extent of stable clusters detected in
Rhode Island throughout the observed time period,
together with the persistent increase in overall proportions
of individuals in stable clusters and decreasing proportions
of unstable clusters might represent a favorable trend,
suggesting saturation and control of a local epidemic. State-
wide transitions from unstable to stable clusters over time,
enabled by longitudinal sequence aggregation and cluster
typing, could be, therefore, considered an ultimate goal in
HIV epidemic control, providing insight and guiding
public health interventions.

On the other hand, further categorization of unstable
clusters in the Rhode Island HIVepidemic demonstrated
trends that can be interpreted as concerning, because of
stability of newly diagnosed individuals in emerging
clusters, despite decreasing overall emerging clusters and
individuals in these clusters. Even more disturbing is a
significant increase in newly diagnosed individuals in
growing clusters despite little changes in overall growing
clusters and individuals in these clusters over time. These
trends, that there are more newly diagnosed individuals in
unstable clusters with time, driven by growing rather than
emerging clusters, may indicate more persistent, rather
than short-lived, growth over time, as well as consistent
in-state HIV transmission chains, requiring better focus.
Such observations create opportunities for stronger local
efforts and interventions, such as more rigorous and
upscaled HIV diagnostics and testing and enhanced
partner services to identify HIV-infected-unaware indi-
viduals, intensified preexposure prophylaxis for high-risk
individuals, and boosted community engagement.

For optimized results, the data required for the proposed
cluster typing would be obtained, analyzed and dissemi-
nated state-wide, with potential for cross state collabora-
tions. These data could help prioritize clusters and facilitate
 Copyright © 2021 Wolters Kluwer H
focused partner services in a timely manner to target the
interventions directly to prioritized clusters, their mem-
bers, and their partners. Such interventions could be
particularly helpful for large jurisdictions and/or those
with limited partner services capacity, within or across
state-lines. Incorporating cluster typing into longitudinal
analyses could provide information beyond conventional
molecular epidemiological approaches, including investi-
gations of transmission outbreaks. The scope and magni-
tude of these speculations and the benefit of cluster typing
for public health still needs to be demonstrated, and studies
are needed to evaluate its generalizability and applicability
to statewide HIV epidemics and beyond.

The performed sensitivity analysis by using a broad range
of cluster definition criteria demonstrated robustness and
validity of the cluster typing approach. Almost all trends
and proportions identified during cluster typing in this
study showed high similarities across the range of criteria.
In rare cases, when discordance was identified, shapes of
analyzed trend curves were still similar irrespective of the
criteria. Analytical approaches in molecular epidemiology
(e.g. software tools and thresholds) as well as scenarios in
which these approaches can and should be used (e.g.
outbreak investigations vs. routine use to guide partner
services) are heterogenous with limited justification of
their specific uses. There is no consensus on optimal
analytical approaches, and many phylogenetic and
distance cluster definition criteria are being used to
determine and characterize HIV molecular clusters [7–
17,65]. Such approaches might need to be further refined
towards specific purposes, such as the use of more strict
cluster definition criteria in transmission outbreak
investigations vs. the use of more relaxed criteria in
historical analyses and routine public health activities.
Although the relative stability of longitudinal cluster
typing based on cluster definition criteria demonstrated
here is reassuring, cluster typing will require exploration
in other HIV epidemics and populations.

A limitation of this study, beyond inevitable incomplete-
ness of sequence data because of individual migration,
commuting, and transience, is incomplete sampling
during early stages of the HIV-1 epidemic in Rhode
Island, which could negatively affect cluster typing
analyses. To minimize sampling bias, we restricted the
analysis to 2004–2019, a time period in which more than
70% of diagnosed individuals in Rhode Island had
available viral sequences. On the other hand, our dataset is
highly representative of the Rhode Island epidemic as we
had access to �80% of individuals with HIV in the state.
Though possibly limiting generalizability, this further
emphasizes potential implications of cluster typing in
larger jurisdictions and the need for its evaluation in other
settings. Additionally, making social assumptions based on
phylogenetic analysis is inferential and likely inaccurate,
and is an inherent limitation of molecular epidemiology
approaches. Lastly, we categorized datasets based on
ealth, Inc. All rights reserved.
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timing of HIV diagnoses rather than HIV infections,
which would have been more accurate, but is information
that is conventionally hard to obtain.

In conclusion, though the existing literature at times
considers growing clusters in HIVepidemic descriptions,
we propose that cluster typing can and should be a
potential addition to cluster analyses (e.g. those promoted
by CDC [8,9]) and evaluations of local HIV-1 epidemics.
This approach, when applied to the densely sampled
Rhode Island epidemic, demonstrated intervention
potential, beyond an acute outbreak mediation. Robust-
ness and benefits of this approach for public health need
to be determined and demonstrated in these and other
settings. However, such a panoramic longitudinal
perspective, beyond individual and cross-sectional cluster
detection and routine contact tracing, could advance
understanding of HIV-1 epidemics, and lead to more
precise public health interventions.
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