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Abstract 

Identifying our most distant animal relatives has emerged as one of the most challenging 

problems in phylogenetics. This debate has major implications for our understanding of the 

origin of multicellular animals and of the earliest events in animal evolution, including the origin 

of the nervous system. Some analyses identify sponges as our most distant animal relatives 

(Porifera-sister hypothesis), and others identify comb jellies (Ctenophora-sister hypothesis). 

These analyses vary in many respects, making it difficult to interpret previous tests of these 

hypotheses. To gain insight into why different studies yield different results, an important next 

step in the ongoing debate, we systematically test these hypotheses by synthesizing 15 

previous phylogenomic studies and performing new standardized analyses under consistent 

conditions with additional models. We find that Ctenophora-sister is recovered across the full 

range of examined conditions, and Porifera-sister is recovered in some analyses under narrow 

conditions when most outgroups are excluded and site-heterogeneous CAT models are used. 

We additionally find that the number of categories in site-heterogenous models is sufficient to 

explain the Porifera-sister results. Furthermore, our cross-validation analyses show CAT models 

that recover Porifera-sister have hundreds of additional categories and fail to fit significantly 

better than site-heterogeneous models with far fewer categories. Systematic and standardized 

testing of diverse phylogenetic models suggests that we should be skeptical of Porifera-sister 

results both because they are recovered under such narrow conditions and because the models 

in these conditions fit the data no better than other models that recover Ctenophora-sister. 

Key words: 

phylogenomics, Ctenophora-sister, Porifera-sister, substitutional models, substitutional 

categories, outgroup sampling, sensitivity analyses. 
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Introduction 

Historically, there was little debate about the root of the animal tree of life. Porifera-sister (Fig. 

1E), the hypothesis that the animal root marks the divergence of Porifera (sponges) from all 

other animals (Fig. 1B), was widely accepted though rarely tested. By contrast, there has long 

been uncertainty about the placement of Ctenophora (comb jellies) (Fig. 1D) in the animal tree 

of life (Wallberg et al. 2004). The first phylogenomic study to include ctenophores (Dunn et al. 

2008) suggested a new hypothesis, now referred to as Ctenophora-sister, that ctenophores 

rather than sponges are our most distant living animal relative (Fig. 1A). Since then, many more 

phylogenomic studies have been published (Fig. 2), with some analyses finding support for 

Ctenophora-sister, some for Porifera-sister, and some neither (King and Rokas 2017) (Table 1, 

Supplementary Text S1). The extensive technical variation across these studies has been 

important to advancing our understanding of the sensitivity of these analyses to a variety of 

factors, demonstrating for example that outgroup and model selection can have a large impact 

on these results (Fig. 3A). But the extensive technical variation has also made it difficult to 

synthesize these results to understand the underlying causes of this sensitivity. Several factors 

make resolution of the root of the animal tree a particularly challenging problem. For one, the 

nodes in question are the deepest in the animal tree of life. Another factor that has been 

invoked is branch lengths (e.g., Figs. S1, S2), which are impacted by both divergence times and 

shifts in rate of evolution. Some sponges have a longer root to tip length, indicating an 

accelerated rate of evolution in those lineages. The stem branch of Ctenophora is longer than 

the Porifera stem branch, which, together with a more typical root-to-tip distance, is consistent 

with a more recent radiation of extant ctenophores (Podar et al. 2001) than extant poriferans. 

The longer ctenophore stem branch has led some to suggest that Ctenophora-sister could be 

an artifact of long-branch attraction to outgroups (Pisani et al. 2015; Kapli and Telford 2020). 

To advance this debate it is critical to understand why different studies yield different results, 

which can only be achieved by examining variation in methods and results of different studies in 

a standardized and systematic framework. Here, we synthesize data and results from 15 

previous phylogenomic studies that tested the Ctenophora-sister and Porifera-sister hypotheses 

(Fig. 2, Table 1). This set includes all phylogenomic studies of amino acid sequence data 

published before 2018 for which we could obtain data matrices with gene partition annotations 

(Laumer2018 data matrix is thus not included here (Laumer et al. 2018)). Among these 15 

studies, three studies (Pisani et al. 2015; Whelan and Halanych 2016; Feuda et al. 2017) are 
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based entirely on previously published data, and gene-partition data are not available from one 

study (Pick et al. 2010). 

Variation in models and sampling across published analyses 

The models of sequence evolution in the studies considered here differ according to two primary 

components: the exchangeability matrix 𝑅 and amino acid equilibrium frequencies 𝛱. The 

exchangeability matrix 𝑅 describes the relative rates at which one amino acid changes to 

another. The studies considered here use exchangeabilities that are the same between all 

amino acids (Poisson, also referred to as F81), or different. If different, the exchangeabilities 

can either be fixed based on previously empirically estimated rates (WAG or LG), or 

independently estimated from the data (GTR). The analyses considered here have site-

homogeneous exchangeability models (site-homogeneous model), which means that the same 

matrix is used for all sites. The equilibrium frequencies describe the expected frequency of each 

amino acid, which captures the fact that some amino acids are much more common than 

others.  

The published analyses differ in whether they take a homogeneous approach and jointly 

estimate the same frequency across all sites in a partition or add parameters that allow 

heterogeneous equilibrium frequencies that differ across sites. Heterogeneous approaches 

include CAT (Lartillot 2004), which is implemented in the software PhyloBayes (Lartillot et al. 

2013) and has been widely applied to phylogenomic studies of deep animal relationships. The 

models that are applied in practice are heavily influenced by computational costs, model 

availability in software, and convention. While studies often discuss CAT and WAG models as if 

they are mutually exclusive, we note that these particular terms apply to non-exclusive model 

components – CAT refers to heterogeneous equilibrium frequencies across sites and WAG to a 

particular exchangeability matrix. In this literature, CAT is generally shorthand for Poisson+CAT 

and WAG is shorthand for WAG+homogeneous equilibrium frequency estimation. To avoid 

confusion on this point, here we always specify the exchangeability matrix first (e.g., GTR), 

followed by modifiers that describe the accommodation of heterogeneity in equilibrium 

frequencies (e.g., CAT). If site homogeneous equilibrium frequencies are used, we refer to the 

exchangeability matrix alone. Gamma-rate heterogeneity, a scalar that accommodates the total 

rate of change across sites, is used in almost every analysis conducted here and we generally 

omit its designation. Some analyses partition the data by genes and use different models for 

each gene (Supplementary Text S2). 
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High-throughput sequencing allows investigators to readily assemble matrices with hundreds or 

thousands of protein-coding genes from a broad diversity of animal species (Table 1). Studies of 

animal phylogeny have used a wide variety of different approaches to identifying and selecting 

genes and taxa for their matrices. As a result, the genes selected for analysis in each study vary 

widely (Figs. 2, S3). Gene sampling varies in several ways, including in the fractions of single-

copy orthologs (e.g., BUSCO genes) and ribosomal protein genes in the matrix (Fig. S4). 

Ingroup taxon sampling also varies widely between studies (Figs. 2, S3). Sampling of ingroup 

taxa (animals) in early studies was biased toward Bilateria. Sampling of non-bilaterian animals, 

including sponges and ctenophores, has improved over time (Fig. S3). Within each clade, there 

is often considerable variation in taxon sampling and therefore often little species overlap across 

studies (Fig. S3). This variation is in part because newer sequencing technologies in more 

recent studies are usually not applied to the exact same species that were included in earlier 

studies. 

Sampling of outgroup taxa (non-animals, in this case) is critical to phylogenetic rooting 

questions, since the node where the outgroup subtree attaches to the ingroup subtree is the 

root of the ingroup. There has therefore been extensive focus on improving outgroup sampling 

when testing phylogenetic hypotheses about rooting (Graham et al. 2002). Most studies 

addressing the animal root have removed more distantly related outgroup taxa in some 

analyses to explore the effect of outgroup selection to ingroup topology (Ryan et al. 2013; Pisani 

et al. 2015). Three progressively more inclusive clades have often been investigated: 

Choanozoa (animals plus most closely related Choanoflagellatea), Holozoa (Choanozoa plus 

more distantly related Holozoa), and Opisthokonta (Holozoa + Fungi). 

Results and Discussion 

Variation in results across published analyses 

We parsed 136 previous phylogenetic analyses from 15 studies (Fig. 3A and Table S1). The 

conclusions of five studies strongly favor Porifera-sister and ten favor Ctenophora-sister (Table 

1). Three studies are based entirely on previously published data, and the remainder add data 

for one or more species. 

Our summary of previous phylogenetic analyses (Fig. 3A) shows that Ctenophora-sister is 

supported in analyses that span the full range of outgroup sampling and models used to date, 

including some analyses with restricted outgroup sampling and models that accommodate site-
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heterogeneous equilibrium frequencies with CAT. This is consistent with previous assessments 

of the problem (Whelan and Halanych 2016) but is drawn from a much more extensive and 

systematic examination. The only analyses that support Porifera-sister have reduced outgroup 

sampling (Choanozoa, Holozoa) and site-heterogeneous models with CAT. Model adequacy 

assessments generally favor GTR+CAT over Poisson+CAT or site-homogeneous models 

(Pisani et al. 2015; Feuda et al. 2017), but because GTR+CAT is so parameter rich, many 

analyses that use a model with GTR+CAT do not converge. The fact that Porifera-sister is 

recovered only for particular models with particular outgroup sampling indicates that model and 

outgroup interact, and that this interaction is fundamental to understanding the range of results 

obtained across analyses. 

New standardized analyses of published matrices 

One of the challenges of interpreting support for the placement of the animal root across 

published studies is that different programs, software versions, and settings have been used 

across analyses. This extensive variation, which has been shown to influence the reproducibility 

of phylogenetic inference (Darriba et al. 2018; Shen et al. 2020), makes it difficult to identify the 

primary factors that lead to different results. Here we first reanalyze the primary matrices from 

each study under the same conditions with IQ-TREE (Nguyen et al. 2015) with multiple 

evolutionary models. We selected this tool because it has greater model flexibility than most 

other phylogenetic tools (Zhou et al. 2018) (Fig. 3B; Table S2). Importantly, it has the site-

heterogeneous C models (C10-C60 equilibrium frequencies) (Si Quang et al. 2008) that, like 

CAT, allow for the accommodation of heterogeneity in equilibrium amino acid frequencies 

across sites. 

For each of the published studies, we selected the matrix that was the primary focus of the 

manuscript, or has been reanalyzed extensively in other studies, for further analysis. For each 

of these matrices, we progressively trimmed taxon sampling to create Opisthokonta, Holozoa, 

and Choanozoa versions, where permitted by original outgroup sampling. This produced 36 

data matrices from 11 studies that presented new sequence data and for which partition data 

were available. 

For all but the three largest matrices, we tested the relative fit of a variety of models, both with 

and without C10-C60 accommodation of site heterogeneity in equilibrium frequencies, using 

ModelFinder (Kalyaanamoorthy et al. 2017) in IQ-TREE. In all cases, models with C60 fit these 

matrices better than the site-homogeneous models. This is consistent with the importance of 
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accommodating site heterogeneity noted by previous investigators (Lartillot 2004; Philippe et al. 

2009; Nosenko et al. 2013; Pisani et al. 2015; Feuda et al. 2017; Simion et al. 2017). We then 

inferred support under the best-fit model (Table S3), except for the three largest matrices where 

we used LG+C60. We then analyzed each matrix under a panel of standard site-heterogeneous 

and site-homogeneous models, including WAG, GTR and Poisson+C60 (Table S2). 

All IQ-TREE analyses, apart from unresolved analyses (for Moroz2014_3d and all 

Nosenko2013 matrices), supported Ctenophora-sister (Fig. 3B). No IQ-TREE analyses 

supported Porifera-sister, including those that restrict outgroup sampling to Choanoflagellatea 

and use models with site-heterogeneous equilibrium frequencies (Fig. 3B lower right; Table S2), 

the conditions under which published PhyloBayes CAT analyses recover strong support for 

Porifera-sister (Fig. 3A). Moreover, we found similar results when only Fungi or Holozoa are 

used as outgroups (Table S4). To further verify this difference in a controlled manner we reran 

PhyloBayes analyses with CAT, using both Poisson and GTR substitution matrices, for some 

matrices that had led to support for Porifera-sister in published analyses. Consistent with 

published results, some of these supported Porifera-sister.  

Our new analyses show that, with restricted outgroup sampling, analyses of the same matrices 

with two different means of accommodating site heterogeneity in equilibrium frequencies (C60 in 

IQ-TREE and CAT in PhyloBayes) yield different results. This indicates that the traditional 

framing of the problem, which posits that accommodating site heterogeneity leads to support for 

Porifera-sister, is incorrect. Rather, our results suggest that there is something about the 

PhyloBayes CAT analyses specifically that leads to support for Porifera-sister. 

Category number explains differences between site-heterogeneous analyses 

There are several factors, including variations in models (C60 vs CAT), software (PhyloBayes 

vs IQ-TREE), and implementation details (e.g., number of categories used to accommodate site 

heterogeneity) that could explain the new variation in results noted here among site-

heterogeneous models. In published analyses of the animal root, these factors were 

confounded since all previous heterogeneous analyses used the CAT model in PhyloBayes. 

Here we seek to deconfound these factors to gain a finer-grained perspective on why results 

differ between analyses of the same matrices. 

A primary difference between the C (e.g., C60) and the CAT site-heterogeneous models is the 

number of equilibrium frequency categories. The standard CAT model employs a Dirichlet 

process prior to inferring the number of equilibrium frequency categories, so the number of 
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categories is variable (Lartillot 2004). IQ-TREE implements C models (Si Quang et al. 2008) 

with a fixed number of categories that can range from 10 (C10) to 60 (C60). Differences in 

analysis results could therefore be due to differences in the number of categories. The number 

of categories inferred by CAT in PhyloBayes can be very high (Table S5), with a mean here of 

623.5 categories for Poisson+CAT analyses in all matrices and 1026 categories for GTR+CAT 

analyses in several representative matrices. This requires a very large number of additional 

estimated parameters. 

We examined the specific impact of this large difference in category number on the position of 

the animal root. It is currently not possible to use more than 60 categories for C models in IQ-

TREE, but the number of categories can be set a priori in PhyloBayes using nCAT. We 

therefore varied the number of categories in PhyloBayes analyses (Fig. 4; Table S6). We found 

that Poisson+nCAT60 analyses in PhyloBayes, like Poisson+C60 and WAG+C60 IQ-TREE 

analyses, provide strong support of Ctenophora-sister (Fig. 4). This indicates that the difference 

in results between unconstrained CAT analyses in PhyloBayes and C60 analyses in IQ-TREE is 

not due to differences in the software or other implementation factors, but due to the large 

difference, in excess of ten-fold, in the number of site categories. When we increased the 

number of categories in PhyloBayes nCAT analyses, we observe the transition from support for 

Ctenophora-sister to an unresolved root to Porifera-sister (Fig. 4). For example, for the 

Whelan2017_strict matrix this transition occurs between 60 – 120 categories when using 

Poisson+nCAT model. Due to computational limitations of GTR models, we only ran GTR+CAT 

and GTR+nCAT60 models on representative matrices with Choanozoa sampling. We found that 

for Whelan2017 matrices, support shifted from Porifera-sister with Poisson+CAT model to 

Ctenophora-sister using GTR+CAT model. Moreover, we also found all results strongly 

supported Ctenophora-sister with GTR+nCAT60 models. 

These results further clarify when analyses support Porifera-sister (e.g., Whelan2017: Fig. S1; 

Philippe2009: Fig. S2): when outgroup sampling is restricted (Choanozoa), when a Poisson 

(rather than a GTR) exchange matrix is used, and when a very large number of site categories 

is used (unconstrained CAT, giving hundreds of equilibrium frequency categories). Analyses 

under other conditions either support Ctenophora-sister or are unresolved. This is consistent 

across published analyses and our new panels of analyses. The question, then, is not why 

similar analyses give different results, but how we should interpret variation in results when we 

run analyses that differ in these specific respects. If we fix the first two features to conditions 

that are necessary for Porifera-sister support (Choanozoa taxon sampling and a Poisson 
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exchange matrix), there are several insights that we can glean from examining how the number 

of equilibrium frequency categories impacts results that sheds light on interpretation of those 

results. 

The first insights regard model fit. ModelFinder selects site heterogeneous C60 models 

according to BIC (Table S3), but IQ-TREE often gives a warning under C60 that the model may 

overfit, with too many categories, because some mixture weights are close to 0 (Table S7). In 

PhyloBayes, cross-validation is a reliable and suggested approach to evaluate the fit of models 

that is often used to test whether there is a significant improvement in the fit of different 

substitution models to the datasets (Lartillot et al. 2009). We evaluated Poisson+CAT and 

Poisson+nCAT60 models with cross-validation in PhyloBayes for the Whelan2017_strict and 

Philippe2009_Choanozoa matrices. For both matrices, we found nearly identical distributions of 

cross-validation scores for Poisson+nCAT60 and Poisson+CAT models (Fig. S5). A paired t-test 

analysis shows that there is no significant difference between them for either matrix 

(Whelan2017_strict: corrected p-value = 0.192; Philippe2009_Choanozoa: corrected p-value = 

0.516. Cross-validation therefore does not support the hypothesis that the unconstrained CAT 

models are a better fit than the models with 60 categories. Interestingly, our results are 

consistent with those of a recent simulation study showing that the CAT model often 

overestimates the true number of categories in the data (Whelan and Halanych 2016). 

Moreover, it has been also suggested that the number of categories inferred from CAT strongly 

correlated with the number of characters from the alignment (Whelan and Halanych 2016). In 

summary, these results suggest that the narrow analysis conditions (Choanozoa taxon 

sampling, Poisson exchange matrix, and unconstrained CAT models that use hundreds of 

categories) under which Porifera-sister are obtained lack statistical support.  

The second insights related to the allocation of sites to equilibrium frequency categories. Each 

new category adds the same number of parameters, but that site can be allocated to any 

number of categories. If, as we add categories, those categories are allocated to a small fraction 

of sites, then the cost of estimating parameters of those additional categories is high relative to 

the fraction of the data they help explain. By examining category allocations in the last chain 

samples of analyses of the Philippe2009_Choanimalia and Whelan2017_strict matrices (Fig. 

S6C-D), which have 510 and 471 categories, respectively, we find that the fraction of sites 

allocated to the 50% of the least frequent categories is 2.97% in the analysis of the 

Philippe2009_Choanozoa matrix and 3.46% in the analysis of the Whelan2017_strict matrix. 

This long tail of categories that apply to a very small fraction of sites is in stark contrast to 
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nCAT60 analyses, constrained to 60 categories, which have no such long tail of rare categories 

(Fig. S6A-B). Although these results are only beginning to address the issue (because we only 

looked site allocation from one generation after the convergence of PhyloBayes runs and the 

site allocations vary extensively between generations), our finding that a very large number of 

categories applies to such a small fraction of data may help explain why increasing the number 

of categories more than ten-fold has so little impact on the predictive power of these far more 

complex models. 

  

Phylogenetic signal 

To further explore the phylogenetic signal of different models we discussed above, we 

quantified the phylogenetic signal for Porifera-sister and Ctenophora-sister topologies across 

three representative data matrices when varying outgroup sampling and model (Fig. S7). By 

calculating differences in log-likelihood scores for these topologies for every gene (𝛥|lnL|) in 

each matrix when using site-homogeneous models in IQ-TREE, we found that the Ctenophora-

sister had the higher proportions of supporting genes in every analysis. Moreover, outgroup 

choice has little impact on the distribution of the support for phylogenetic signals in analyses 

with site-homogeneous models. This finding is largely consistent with the previously observed 

distribution of support for Ctenophora-sister in other data matrices (Shen et al. 2017). 

Although a higher proportion of genes support Ctenophora-sister with site-heterogeneous C60 

models, the phylogenetic signal decreases in many genes using C60 models compared to site- 

homogeneous models. In an extreme case, in matrices from Ryan2013_est nearly 30% of 

genes changed from strong 𝛥|lnL|>2) to weak Ctenophora-sister signal (𝛥|lnL|<2) (Fig. S7; 

Table S8). In contrast to the C60 models, there is a major increase in phylogenetic signal in 

Poisson+CAT models in PhyloBayes towards Porifera-sister, and outgroup choice has a major 

effect of the distribution of phylogenetic signal (Fig. S7). For example, in Whelan2017_full 

matrix, we found that the number of genes that support Ctenophora-sister in analyses with CAT 

decreases from 57.5% in matrices with distant outgroups (Holozoa) to 35.4% when outgroups 

are restricted (Choanozoa, Table S8).  

Amino acid recoding does not accommodate site heterogeneity 

Another approach that has been used to address base compositional heterogeneity across taxa 

is recoding (Feuda et al. 2017; Laumer et al. 2019). For example, Feuda et al. recoded the full 
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set of twenty amino acids into six groups of amino acids. These groups tend to have more 

frequent evolutionary changes within them than between them (Susko and Roger 2007). 

Recoding could, like CAT and C models, address variation across sites, but it could also 

accommodate variation across lineages, and it was suggested that this approach favors 

Porifera-sister (Fig. S8; Feuda et al. 2017).  

Feuda et al. hypothesized that recoding would reduce potential artefacts due to differences 

across species in amino acid frequencies. They interpreted the finding that their analyses are 

sensitive to recoding as evidence that such an artefact exists and that they successfully 

addressed it by recoding. However, an alternative hypothesis is that recoding impacts 

phylogenetic analyses because it discards a lot of information.  

These two hypotheses can be tested by applying new recoding schemes that also reduce 

twenty states down to six but are based on random grouping rather than empirical frequencies 

of amino acid exchange. Empirical and random recodings both discard the same amount of 

information, but only empirical recoding reduces the impact of amino-acid frequency as 

intended. Different results between empirical and random recoding would be consistent with the 

hypothesis that the empirical approach works as intended to accommodate compositional 

heterogeneity. Similar results would suggest that the impact of recoding is due to discarding 

information. Here we focus on a single analysis with a posterior predictive score that supports 

Porifera-sister, the GTR+CAT analysis of the SR-6 recoded Whelan data. We created four new 

random recoding schemes by shuffling the amino acids in the SR-6 scheme (see Methods). 

When we applied each of these randomized codes to the Whelan matrix and analyzed them 

under the GTR+CAT model with PhyloBayes-MPI, we observed similar results as for the 

empirical SR-6 recoding. Specifically, like SR-6 recoding, random recoding increases support 

for Porifera-sister and improves the apparent adequacy of models to explain heterogeneity of 

states across taxa (PP taxon hetero mean and max, Fig. S9). 

These analyses suggest that the major impact of recoding on phylogenetic analyses is data 

reduction, not accommodation of compositional heterogeneity across species (Supplementary 

Text S3, Figs. S8-S9). Consistent with a recent simulation study on data recoding (Hernandez 

and Ryan 2021), these findings indicate that recoding can be a problematic method for 

addressing heterogeneity. 
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Conclusions 

Resolving the placement of the root in the animal tree of life has proved very challenging 

(Laumer et al. 2019; King and Rokas 2017). By synthesizing past phylogenomic studies and 

performing new analyses, we find that support of Porifera-sister is only recovered by site-

heterogeneous CAT models with restricted outgroup sampling, and then only in some such 

analyses. Through controlled analyses we are able to identify the specific aspect of the models 

that is involved in this variation – the number of categories used to accommodate site 

heterogeneity in equilibrium frequency (Fig. 4). Notably, the 10-fold difference in category 

number seen in the more complex CAT models that support Porifera-sister does not improve 

model fit according to cross-validation. This suggests that we should not privilege these narrow 

analysis conditions that recover Porifera-sister over the much broader range of conditions that 

recover Ctenophora-sister. 

Pin-pointing category number as an issue with large effect on analyses of the animal root will 

help guide future analyses that address this question. We hope that the work we have 

conducted here to consolidate many datasets and analyses in standard formats will make it 

easier for other investigators to engage in this particularly interesting and difficult phylogenetic 

problem, and that this problem can be a testbed to develop methods and tools that will help with 

other difficult phylogenetic problems as well. Advances on the question of the animal root will 

come from progress on other fronts as well. For example, there are many organisms that are 

highly relevant to this problem, in particular outgroup, ctenophore, and sponge taxa, for which 

no genome or transcriptome data are available (King and Rokas 2017). More broadly, there are 

very few chromosome-level genome assemblies for animals outside of Bilateria. Future 

analyses focused on complete genomes rather than transcriptomes and partial genomes will 

have multiple advantages. Data matrices derived from these more complete sources will have a 

lower fraction of missing sequences. Complete gene sampling within each species will also 

greatly improve analyses of gene duplication and loss, a critical step in building phylogenomic 

matrices such as those presented here. Analyses of this new generation of matrices derived 

from complete genomes will be well served by understanding the sources of analysis variation 

in the generation of matrices that came before them. 
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Materials and Methods 

Data and code availability 

The main data and results associated with the main text and supplementary materials are 

available in the GitHub data repository at https://github.com/dunnlab/animal_tree_root. All tree 

files, intermediate results and scripts/commands associated with this study are available in the 

Figshare data repository at https://doi.org/10.6084/m9.figshare.13085081.v1. 

Data selection and wrangling 

We retrieved matrices from each publication (Table 1), storing the raw data in this manuscript’s 

version control repository. We manually made some formatting changes to make the batch 

processing of the matrices work well, e.g., standardizing the format of Nexus CHARSET blocks. 

All changes made are tracked with git. 

Matrix comparison and annotation 

Taxon name reconciliation 

We programmatically queried the NCBI Taxonomy database to standardize names of samples 

in each matrix. We also used a table where manual entries were needed 

(manual_taxonomy_map.tsv), e.g., authors of the original matrix indicate species name in 

original manuscript. For a table summarizing all samples and their new or lengthened names, 

see taxon_table.tsv. 

Sequence comparisons 

Using the original partition files for each matrix, we separated each sequence for each taxon 

from each partition. Because many of the matrices had been processed by the original authors 

to remove columns that are poorly sampled or highly variable, these matrix-derived sequences 

can have deletions relative to the actual gene sequences. 

We used DIAMOND v0.9.26 (Buchfink et al. 2014) to compare each sequence to all others 

using default diamond Blastp parameters. We further filtered DIAMOND results such that we 

retained hits for 90% of partitions (pident > 50.0, eValue < 1e-5, no self vs self). We ran BUSCO 

with default parameters for all sequences against the provided Metazoa gene set. We also ran a 

BLAST+ v2.8.1 (Camacho et al. 2009) blastp search against the SwissProt (Boeckmann et al. 
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2003) database, filtering results such that we retain at least one hit for ~97% of partitions (pident 

> 50.0, eValue < 1e-15). 

Partition network 

We used the sequence similarity comparisons described above to compare partitions. 

We constructed a network with Python and NetworkX v2.2 (Hagberg et al. 2008) where each 

node is a partition, and each edge represents a DIAMOND sequence-to-sequence match 

between sequences in the partitions. We extracted each connected component from this 

network. We further split these components if the most connected node (i.e., most edges) had 

two times more the standard deviation from the mean number of edges in the component it is a 

member of and if removing that node splits the component into two or more components. We 

then decorated every node in the partition network with the most often found SwissProt BLAST+ 

result and BUSCO results to see which components contain which classes and families of 

genes. See partition_network_summary in Rdata for a summary tally of each part of the 

comparison. 

Phylogenetic analyses 

Phylogenetic analyses in IQ-TREE 

To investigate the phylogenetic hypotheses and distribution of phylogenetic signal in studies 

aiming to find the root position of animal phylogeny, we considered 16 data matrices from all 

phylogenomic studies that were constructed from EST, transcriptomic, or genomic data (Table 

1). Because different choices of substitution models could largely influence phylogenetic 

inference of the placement of the root position of animal phylogeny (e.g., site-heterogeneous 

vs. site-homogeneous models), we first investigated model-fit from each matrix using 

ModelFinder in IQ-TREE v1.6.7, including site-heterogenous C10 to C60 profile mixture models 

(C60 models) as variants of the CAT models in ML framework (C10-C60 model were included 

for model comparison via -madd option). We included models that are commonly used in 

previous analyses, including site-homogeneous Poisson, WAG, LG, GTR models plus C10-C60 

models in the model testing. For computational efficiency, the GTR+C60 models were not 

included in model testing since it requires to estimate over 10,000 parameters. For large 

matrices like those from Hejnol2009, Borrowiec2015, and Simion2017, model testing is also not 

computational feasible so only LG+C60 models were used since LG/WAG+C60 models were 

suggested as the best-fit model in all other matrices. 
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We then reanalyzed each matrix under a panel of evolutionary models, including WAG, GTR, 

Poisson+C60 and associated best-fit model identified above. Nodal support was assessed with 

1000 ultrafast bootstrap replicates for each analysis. Because of the large size of Hejnol2009 

and Simion2017, it was not computationally feasible to analyze the whole matrix using the C60 

model or CAT site-heterogeneous models. To circumvent his limitation, we reduced the data 

size from their full matrices to facilitate computational efficiency for site-heterogeneous models. 

For Hejnol2009 matrix, we instead used the 330-gene matrix constructed by Hejnol et al. 2009, 

since the main conclusion for their study is based on this subsampled matrix; For Simion2017 

matrix, we only included the most complete 25% of genes (genes that were present in less than 

79 taxa were removed; 428 genes were kept). It should be noted that the main conclusion of 

Simion et al. was also based on selection of 25% of genes for their jackknife approach. 

Outgroup taxa sampling with C60 and CAT models 

Because different choices of outgroups could also affect phylogenetic inference as suggested in 

previous analyses, we parsed the full data matrices into three different types of outgroups: 

Choanozoa, Holozoa and Opisthokonta. These datasets include the same set of genes but 

differ in the composition of outgroup species. Choanozoa only includes Choanoflagellatea 

outgroup; Holozoa also includes more distantly related Holozoans; Opisthokonta also includes 

Fungi. For each Choanozoa data matrix, both C60 models in IQ-TREE and Poisson+CAT 

models in PhyloBayes were conducted. The maximum likelihood analysis was performed using 

the best-fit substitution model identified as above and nodal support was assessed with 1000 

ultrafast bootstrap replicates using IQ-TREE. Moreover, Bayesian inference with the site-

heterogeneous Poisson+CAT model was done with PhyloBayes-MPI v1.8. To minimize 

computational burden, GTR+CAT models were only performed in the representative Choanozoa 

matrices from Philippe2009, Ryan2013_est and Whelan2017_full. 

For several Choanozoa matrices indicated strong support for the hypothesis that sponges are 

the sister group to the remaining Metazoa using the Poisson+CAT model, Bayesian inference 

with Poisson+CAT model was also conducted to Holozoa and Opisthokonta data matrices with 

the same settings as above. For all the analyses with Poisson+CAT models in PhyloBayes, two 

independent chains were sampled every generation. Tracer plots of MCMC runs were visually 

inspected in Tracer v1.6 to assess stationarity and appropriate burn-in. Chains were considered 

to have reached convergence when the maxdiff statistic among chains was below 0.3 (as 

measured by bpcomp) and effective sample size > 50 for each parameter (as measured by 

tracecomp). A 50% majority-rule consensus tree was computed with bpcomp, and nodal support 
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was estimated by posterior probability. Most PhyloBayes runs converged, although several 

large matrices have not reached convergence after at least a month’s computational time. For 

those matrices that were not converged, PhyloBayes analyses were run for at least two weeks. 

We also summarized the average number of substitutional categories inferred for each 

PhyloBayes analysis using Tracer. 

To examine the effects of distantly related outgroups on the phylogenetic inference, we also 

conducted analyses based on using only Fungi, only Holozoa as outgroups in Philippe2009 and 

Whelan2015_D20 data matrices using site-homogeneous, C60 and Poisson+CAT models.  

 

Phylogenetic distribution of support 

To investigate the distribution of phylogenetic signal of the animal-root position in data matrices, 

we considered three major data matrices from three studies that had different topology between 

ML and BI using CAT model in our reanalysis, including Philippe2008, Ryan2013_est, and 

Whelan2017_full data matrices. We examined two hypotheses: Ctenophora-sister (T1) and 

Porifera-sister (T2) to the rest of metazoans, under a panel of evolutionary models with different 

outgroup schemes (Choanozoa and the full matrix). For IQ-TREE analysis in each data matrix, 

site-wise likelihood scores were inferred for both hypotheses using IQ-TREE (option -g) with the 

LG+G4 model. The two different phylogenetic trees passed to IQ-TREE 1.6.12 (via -z) were the 

tree where Ctenophora-sister and a tree modified to have Porifera placed as the sister to the 

rest of animals. The numbers of genes and sites supporting each hypothesis were calculated 

from IQ-TREE output and Perl scripts from a previous study (Shen et al. 2017). By calculating 

gene-wise log-likelihood scores between T1 and T2 for every gene, we considered a gene with 

an absolute value of log-likelihood difference of two as a gene with strong (|ΔlnL| > 2) or weak 

(|ΔlnL| < 2) phylogenetic signal as done in a previous study (Smith et al. 2020). 

For Poisson+CAT and LG in PhyloBayes, we only considered the Philippe2009 and 

Whelan2017 matrices due to computational efficiency. Since the default option in PhyloBayes 

does not provide the feature to calculate site-wise log likelihood for every generation, we 

replaced the line “int sitelogl = 0” with “int sitelogl = 1” in the file named “ReadSample.cpp” and 

installed PhyloBayes 4.1c so that site-wise log likelihood value can be stored to a file that ends 

with “.sitelogl” (via readpb –sitelogl). For each condition, we first calculated site-wise log 

likelihoods for each of two hypotheses (T1 and T2) using pb (via –T) and then stored site-wise 

log likelihood (a total number of samples for each site is 20) every ten until 300th generations, 
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after discarding the first 100 generations using readpb (via -sitelogl -x 100 10 300). Next, we 

normalized site-wise log likelihood value across 20 samples for each of two hypotheses (T1 and 

T2) and combined normalized site-wise log likelihood values of T1 and T2 into a single file that 

was used to calculate gene-wise log-likelihood scores between T1 and T2 with Perl scripts from 

a previous study (Shen et al. 2017). 

Sensitivity analyses with different number of substitutional categories 

To explore how the number of substitutional categories may affect the phylogenetic inference 

related to the animal phylogeny, we conducted PhyloBayes analyses with a panel of different 

substitutional categories in the Whelan2017_strict (ncat=60, 70, 80, 90, 110, 120, 150, 180, 

360), Whelan2017_full_Choanozoa (nCAT=60, 340, 380, 420, 460), Philippe2009 (nCAT=60, 

90, 120, 150, 180) Philippe2009_Holozoa (nCAT=360, 400, 440, 480) and Ryan2013_est 

(ncat=60). To compare the results between Poisson+CAT and GTR+CAT and minimize 

computational burden, GTR+CAT and GTR+CAT60 models were only performed in the 

representative Choanozoa matrices from Philippe2009, Ryan2013_est and Whelan2017_full. All 

PhyloBayes analyses were carried out using the same settings as above (see Outgroup taxa 

sampling with C60 and CAT models section), except when a different number of categories was 

used. 

To compare the allocation of frequency categories across sites in the Philippe2009_Choanozoa 

and Whelan2017_strict matrices for the constrained Poisson+CAT60 model and unconstrained 

Poisson+CAT model, we parsed the information of PhyloBayes chain files by sampling one in 

every 1000 generations after burnin determined above. The scripts and subsampled chain files 

are in the “../trees_new/frequency” subdirectory of the git repository. 

Cross-validation analyses 

Bayesian cross-validation implemented in PhyloBayes-MPI was used to compare the fit of 

Poisson+nCAT60 and Poisson+CAT models coupled with a gamma distribution of site-rate 

heterogeneity in Whelan2017_strict and Philippe2009_Choanozoa data matrices. Ten replicates 

were run, each replicate consisting of a random subsample of 10,000 sites for training the 

model and 2,000 sites for computing the cross-validation likelihood score. For each run, 5,000 

generations were run and the first 2,000 generations were discarded as burn-in. To compare if 

there is significant difference of cross-validation scores between nCAT60 and CAT models, we 

conducted a paired T-test with p value adjusted by Bonferroni methods using R package rstatix 

(Team 2019). 
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Performance of data-recoding 

All code used for the analyses presented here is available in a git repository at 

https://github.com/caseywdunn/feuda_2017. The randomized recoding analyses are in the 

recoding/alternative subdirectory of the git repository. 

The original SR-6 recoding scheme is “APST CW DEGN FHY ILMV KQR” (Susko and Roger 

2007), where spaces separate amino acids that are placed into the same group. This recoding 

is one member of a family of recodings, each with a different number of groups, based on 

clustering of the JTT matrix. The other recoding used by Feuda et al., KGB-6 and D-6, are 

based on different matrices and methods (Feuda et al. 2017). 

The alt_recode.py script was used to generate the randomized recoding schemes and apply the 

recodings to the data. To create the randomized recoding schemes, the amino acids in the SR-6 

recoding were randomly reshuffled. This creates new recodings that have the same sized 

groups as SR-6. The new recodings were, from random-00 to random-03: 

MPKE AY IDGQ TRC WNLF SVH 

EIFT WL QVPG NKM SCHA RYD 

LCQS GK WPTI VRD YEFN MAH 

IWQV TY KDLM ESH APCF GRN 

To apply these to the data, each amino acid was replaced with the first amino acid in the group. 

When applying random-00, for example, each instance of R and C would be replaced by a T. 

The 20 state matrices are the same across all analyses since they are not recoded. Since all 20 

state matrices are the same, variation between 20-state results (as in the left side of each pane 

of Fig. S9) gives insight into the technical variance of the inference process. 

Each new matrix was analyzed with PhyloBayes-MPI. Analyses were run for 1000 generations, 

and a 200 generation burnin applied. The resulting tree files and posterior predictive scores 

were parsed for display with the code in manuscript.rmd. 

The statistics presented in Fig. S8A were parsed from the Feuda et al. manuscript into the file 

tidy_table_3.tsv and rendered for display with the code in manuscript.rmd. 
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Tables 

Table 1. Overview of data matrices used in this study. 

Study Matrix Clade No.  
genes  

No.   
sites 

No.   
taxa 

Inferred sister 
lineage 

Journal No. citations 

Dunn2008 Dunn2008 Opisthokonta 150 21152 64 Ctenophora-
sister 

Nature 1794 

Philippe2009 Philippe2009 Opisthokonta 129 30257 55 Porifera-sister Current 
Biology 

649 

Hejnol2009 Hejnol2009 Opisthokonta 1487 270580 94 Ctenophora-
sister 

Proc. Biol. Sci. 707 

 Hejnol2009_subsampled Opisthokonta 844 55594 94 Ctenophora-
sister 

  

Pick2010      Porifera-sister Molecular 
Biology and 
Evolution 

326 

Nosenko2013 Nosenko2013_nonribo_9187 Opisthokonta 35 9187 63 Ctenophora-
sister 

Molecular 
Phylogenetics 
and Evolution 

221 

 Nosenko2013_ribo_14615 Opisthokonta 87 14615 71 Porifera-sister   

Ryan2013 Ryan2013_est Opisthokonta 406 88384 61 Ctenophora-
sister 

Science 534 

Moroz2014 Moroz2014_3d Opisthokonta 114 22772 46 Ctenophora-
sister 

Nature 491 

Whelan2015 Whelan2015_D1 Opisthokonta 251 59733 76 Ctenophora-
sister 

PNAS 220 

 Whelan2015_D10 Opisthokonta 210 59733 70 Ctenophora-
sister 

  

 Whelan2015_D20 Opisthokonta 178 81008 65 Ctenophora-
sister 

  

Borowiec2015 Borowiec2015_Best108 Choanozoa 108 41808 36 Ctenophora-
sister 

BMC 
Genomics 

104 

 Borowiec2015_Total1080 Choanozoa 1080 384981 36 Ctenophora-
sister 

  

Pisani2015 Ryan2013_est Opisthokonta 406 88384 60 Porifera-sister PNAS 206 

 Whelan_D6 Opisthokonta 115 33403 70 Porifera-sister   

Chang2015 Chang2015 Opisthokonta 170 51940 77 Ctenophora-
sister 

PNAS 119 

Whelan2016 Philippe2009 Opisthokonta 129 30257 55 Ctenophora-
sister 

Systematic 
Biology 

37 

 Nosenko2013_nonribo_9187 Opisthokonta 35 9187 63    

 Nosenko2013_ribo_14615 Opisthokonta 87 14615 71    

Simion2017 Simion2017 Opisthokonta 1719 401632 97 Porifera-sister Current 
Biology 

220 

 Simion2017_subsampled Opisthokonta 1719 110602 97 Porifera-sister   

Feuda2017 Chang2015 Opisthokonta 170 51940 77 Ctenophora-
sister 

Current 
Biology 

119 

 WhelanD20 Opisthokonta 178 81008 65 Porifera-sister   

Whelan2017 Whelan2017b_full Holozoa 212 68062 80 Ctenophora-
sister 

Nature 
Ecology and 
Evolution 

79 

 Whelan2017b_strict Choanozoa 117 49388 76 Ctenophora-
sister 
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Figure legends 

Fig. 1. Two alternative phylogenetic hypotheses for the root of the animal tree. (A) The 

Ctenophora-sister hypothesis posits that there is a clade (designated by the orange node) that 

includes all animals except Ctenophora, and that Ctenophora is sister to this clade. (B) The 

Porifera-sister hypothesis posits that there is a clade (designated by the green node) that 

includes all animals except Porifera, and that Porifera is sister to this clade. Testing these 

hypotheses requires evaluating the support for each of these alternative nodes. (C) The animals 

and their outgroup choice, showing the three progressively more inclusive clades Choanozoa, 

Holozoa, and Opisthokonta. (D) A ctenophore, commonly known as a comb jelly. (E) A 

poriferan, commonly known as a sponge. 

Fig. 2. An overview of previous phylogenomic studies on animals. The horizontal axis is a time-

series showing the main conclusions of previous phylogenomic studies that indicated their 

analyses supported Ctenophora-sister (orange nodes) or Porifera-sister (green nodes) based on 

their main conclusion from each study. Each of the primary matrices considered here is shown 

above the axis, color coded by taxon sampling. Horizontal size is proportional to the number of 

genes sampled, vertical size to the number of species sampled. Only 11 matrices were shown 

here since three studies (Pisani et al. 2015; Whelan and Halanych 2016; Feuda et al. 2017) are 

based entirely on previously published data and gene-partition data is not available from one 

study (Pick et al. 2010). 

Fig. 3. Summary of phylogenomic results from previous studies and reanalysis conducted in this 

study. Each point represents a phylogenetic analysis with a support of bootstrap values less 

than 90% or a posterior probability less than 95% are considered as unresolved. The clades are 

organized with increased outgroup sampling higher on the vertical axis, and the models are 

organized in general by increasing complexity in terms of numbers of parameters to the right on 

the horizontal axis. (A) Analyses transcribed from the literature (related to Table S1). (B) New 

phylogenomic analyses conducted in this study (related to Table S2). Over 1,011,765 CPU 

hours (~115 CPU years) were used for this study. 

Fig. 4. Sensitivity analyses with representative data matrices were analyzed by different number 

of equilibrium frequency categories (nCAT) in PhyloBayes. Statistical support values (posterior 

probabilities) were obtained from three data matrices using the site-heterogeneous 

Poisson+CAT model with different categories. (A) Phlippe2009_Choanozoa; (B) 

Philippe2009_Holozoa; (C) Whelan2017_full_Choanozoa; (D) Whelan2017_strict. Statistical 
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support for Ctenophora-sister and Porifera-sister is indicated in orange and green, respectively. 

Support values from the sensitivity analyses are shown in Table S6. 
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