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An investigation of irreproducibility in maximum
likelihood phylogenetic inference
Xing-Xing Shen 1,2✉, Yuanning Li 3, Chris Todd Hittinger 4,5, Xue-xin Chen 1,2 & Antonis Rokas 3✉

Phylogenetic trees are essential for studying biology, but their reproducibility under identical

parameter settings remains unexplored. Here, we find that 3515 (18.11%) IQ-TREE-inferred

and 1813 (9.34%) RAxML-NG-inferred maximum likelihood (ML) gene trees are topologically

irreproducible when executing two replicates (Run1 and Run2) for each of 19,414 gene

alignments in 15 animal, plant, and fungal phylogenomic datasets. Notably, coalescent-based

ASTRAL species phylogenies inferred from Run1 and Run2 sets of individual gene trees are

topologically irreproducible for 9/15 phylogenomic datasets, whereas concatenation-based

phylogenies inferred twice from the same supermatrix are reproducible. Our simulations

further show that irreproducible phylogenies are more likely to be incorrect than reproducible

phylogenies. These results suggest that a considerable fraction of single-gene ML trees may

be irreproducible. Increasing reproducibility in ML inference will benefit from providing

analyses’ log files, which contain typically reported parameters (e.g., program, substitution

model, number of tree searches) but also typically unreported ones (e.g., random starting

seed number, number of threads, processor type).
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The ability to replicate the results of a specific published
experiment or analysis is a cornerstone of the scientific
enterprise1–3. In the last few years, concerns about scien-

tists’ abilities to accurately reproduce the results of published
studies in numerous disciplines, ranging from psychology and
molecular biology to oncology, have steadily increased, leading to
what some have dubbed as “the reproducibility crisis”4–10.

Phylogenetics, the science of reconstructing evolutionary rela-
tionships of biological entities, is fundamental to the study of
biology11–14. For example, phylogenetic trees are routinely used
to understand how genes, genomes, organisms, and species
evolve15–17. Application of phylogenetic trees also extends to
other fields, and a phylogenetic framework has been employed to
understand the evolution of diverse non-biological entities, such
as languages and medieval manuscripts18–21.

Concerns about reproducibility in phylogenetics are not new
but have historically been attributed to the unavailability of the
data used in inference22,23. For example, a 2013 meta-analysis
reported that phylogenetic trees in 6277/7539 (83.3%) studies
published in the last few decades are irreproducible due to the
unavailability of the underlying data22. The availability of public
data repositories (e.g., TreeBASE, Dryad, Figshare, Zenodo, OSF)
coupled with the modernization of journal data sharing policies
have greatly increased the availability of sequence alignment data,
the resulting phylogenetic trees, as well as of information about
program(s) and key parameter settings (e.g., substitution model)
used24–30.

Concerns remain, however, that the information that is now
routinely provided in public data repositories may be still insuf-
ficient to ensure reproducibility of a study’s findings. For exam-
ple, phylogenetic studies seldom provide the random starting seed
number used in inference, even though it is well established that it
can affect hill-climbing tree heuristic searches of state-of-the-art,
widely used maximum likelihood (ML)-based phylogenetic pro-
grams, such as IQ-TREE31 and RAxML-NG32. More worri-
somely, we currently know little about how the phylogenetic
informativeness of the underlying data (e.g., the number of
parsimony-informative sites or branch support values) or the
variation in the computing resources used (e.g., number of the
central processing unit (CPU) cores and type(s) of processor
among studies or among nodes of a supercomputing cluster)33,34

affect the reproducibility of phylogenetic inference.
Here we show that ~9 to ~18% of single-gene phylogenies are

topologically irreproducible when executing two replicates (Run1
and Run2) on the same program (IQ-TREE or RAxML-NG on
two threads of execution) with exactly the same parameter set-
tings for each of 19,414 gene alignments in 15 animal, plant, and
fungal studies. We further find that low phylogenetic informa-
tiveness (e.g., low percentage of parsimony-informative sites in
gene alignment, short alignment length, and low branch support
values), random starting seed number, processor type, and thread
number contribute to the observed irreproducibility. Interest-
ingly, thread number affected reproducibility in a program-
specific manner.

Results
The ML phylogenies of a considerable number of genes in
phylogenomic data sets are irreproducible. To evaluate the
reproducibility of single-gene phylogenetic trees, we collected
19,414 gene alignments from 15 animal, plant, and fungal phy-
logenomic data sets that span a wide spectrum of taxonomic
ranks (Supplementary Data 1). For each gene alignment, we
conducted two replicate runs (Run1 and Run2) using identical
settings, including substitution model, random starting seed
number, number of threads of execution (2), the number of

independent tree searches (20), log-likelihood epsilon value
(0.0001), and ML program. Note that we chose values for the
number of independent tree searches (20 instead of the standard
range of 1–5) and log-likelihood epsilon (0.0001 instead of the
standard 0.1) that aimed to minimize uncertainty in inference
stemming from the fact that we are conducting heuristic searches.
We used two state-of-the-art ML programs: IQ-TREE31, whose
heuristic search algorithm uses nearest-neighbor-interchange
(NNI)35, and RAxML-NG32, whose algorithm uses subtree
pruning and regrafting (SPR)36 (Fig. 1).

For each pair of ML trees inferred from the Run1 and Run2
analyses of the same gene, we computed the normalized
Robinson–Foulds37 tree distance (nRFD; i.e., the fraction of
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Fig. 1 Overview of assessing the reproducibility of phylogenetic
inference. Our assessment begins with a gene sequence alignment. Two
replicates (Run1 and Run2) using exactly the same parameters, including
substitution model, random starting seed number, number of threads (2),
number of tree searches (20), and log-likelihood epsilon for optimization
(0.0001) on the same maximum likelihood (ML) program (IQ-TREE or
RAxML-NG) were used to evaluate the reproducibility of the phylogenetic
tree inferred from a given gene alignment. The Run1 and Run2 replicates
were executed on two separate nodes (i.e., each analysis was run on a
single node, but Run1 was executed on a different node than Run2) on a
supercomputing cluster. Genes whose Run1 and Run2 generated
topologically identical phylogenies were considered reproducible, while
genes whose Run1 and Run2 generated topologically different phylogenies
were considered irreproducible, but we also examined differences in the
trees’ branch lengths and clade support values. We analyzed 19,414 gene
alignments from 15 animal, plant, and fungal phylogenomic data sets with a
wide range of taxon sampling (from 15 to 1178 taxa) that were constructed
using diverse gene sampling approaches.
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bipartitions that differ between Run1 and Run2 trees) and the
branch score distance of Kuhner and Felsenstein38 (KF is the sum
of the squares of the differences in branch lengths between Run1
and Run2 trees) with the R packages ape version 5.3 and
phangorn version 2.5.539,40. We found that 3515/19,414 genes
(18.1%) in IQ-TREE and 1813/19,414 genes (9.3%) in RAxML-
NG differed in their topologies (nRFD > 0) and branch lengths
(KF > 0) (Figs. 1, 2 and Supplementary Fig. 1, Supplementary
Data 1 and 2), 666/19,414 (3.4%) in IQ-TREE and 436/19,414
(2.2%) in RAxML-NG yielded the same topology (nRFD= 0) but
differed in their branch lengths (KF > 0), while the remaining
15,233/19,414 (78.5%) in IQ-TREE and 17,165/19,414 (88.5%) in
RAxML-NG had identical topology (nRFD= 0) and branch
lengths (KF= 0) (Supplementary Fig. 1a). In addition, the
differences in branch lengths between Run1 and Run2 trees with
the same topology were much smaller than those observed
between trees that differed in their topologies (Supplementary
Fig. 1b). Observed patterns of topological irreproducibility were

very similar in two different supercomputing clusters at the
University of Wisconsin-Madison and at Vanderbilt University
(Fig. 2 and Supplementary Fig. 2, Supplementary Data 2 and 3).

Among the 15 phylogenomic data sets examined, the
percentage of genes that produced topologically irreproducible
phylogenetic trees varied between 0.12% and 47.28% (IQ-TREE)
and between 0.09 and 33.47% (RAxML-NG) (Fig. 2). In 14/15
data sets, IQ-TREE had higher levels of gene tree irreproducibility
than RAxML-NG (Fig. 2). To examine the degree to which the
genes that produced topologically irreproducible trees inferred by
the two programs overlapped, we compared IQ-TREE-inferred
gene trees with RAxML-NG-inferred gene trees. We found that
only 3940/19,414 (20.3%) gene alignments yielded topologically
identical phylogenies in Run1 and Run2 of IQ-TREE and in Run1
and Run2 of RAxML-NG (Supplementary Fig. 3).

To examine whether the observed irreproducibility of gene
trees resulted in significantly different topologies, we used the
approximately unbiased (AU) test41 to evaluate whether the
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Fig. 2 Considerable numbers of genes in phylogenomic data sets produce irreproducible phylogenies. Bar plots show the percentages of genes that are
irreproducible when using IQ-TREE (in yellow) and RAxML-NG (in blue), respectively. The bar plot at the upper left is based on all 19,414 gene alignments
from 15 phylogenomic data sets; it shows that the phylogenies of 3515/19,414 genes (18.11%) and 1813/19,414 genes (9.34%) are irreproducible between
two replicates (Run1 and Run2) using IQ-TREE (in yellow) and RAxML-NG (in blue), respectively. The rest of the bar plots show the individual results for
each of the 15 phylogenomic data sets. These data sets were constructed using five different but widely accepted gene sampling approaches (shown in
parentheses): Ultraconserved Element (UCE) capture, Anchored Hybrid Enriched (AHE) capture, conserved exon capture, transcriptome sequencing, and
whole-genome sequencing. All 77,656 analyses (19,414 alignments * 2 replicates * 2ML programs) were run using two threads per node on the Center for
High-Throughput Computing (CHTC) at the University of Wisconsin-Madison. Detailed values are given in Supplementary Data 2. All gene alignments,
gene trees, and log files, as well as statistics of the results, are available on the figshare repository: https://doi.org/10.6084/m9.figshare.11917770.
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different topologies inferred in Run1 and Run2 analyses could
equally explain the gene alignment (null hypothesis H0). We
found that the Run1 and Run2 topologies for 302/3515 (8.59%)
irreproducible single-gene ML phylogenies generated by IQ-
TREE and 457/1813 (25.21%) irreproducible phylogenies gener-
ated by RAxML-NG were significantly different (AU test; P-
value ≤ 0.05) (Supplementary Fig. 4). Among genes that yielded
topologically irreproducible phylogenies, the percentage of those
that reached significance in the AU test varied between 0.00 and
48% and between 0.00% and 59.26% across the 15 phylogenomic
data sets examined in IQ-TREE and RAXML-NG (Supplemen-
tary Fig. 4), respectively.

Comparison of the Run1 and Run2 trees for the 3515
irreproducible gene phylogenies in IQ-TREE and for the 1813
irreproducible gene phylogenies in RAxML-NG (Fig. 3a, b and
Supplementary Figs. 5–12) revealed considerable tree distance
(average nRFD between Run1 and Run2 trees in IQ-TREE= 0.28;
average nRFD in RAxML-NG= 0.34) (Fig. 3a and Supplemen-
tary Fig. 5) and log-likelihood score (average difference in log-

likelihood scores between Run1 and Run2 in IQ-TREE= 1.09769;
the average difference in log-likelihood scores between Run1 and
Run2 in RAxML-NG= 0.15076) differences (Fig. 3b and
Supplementary Fig. 6).

Phylogenetic inference is a linear workflow that includes a
series of separate steps (e.g., data sampling, orthology identifica-
tion, multiple sequence alignment, tree-building)42–44, with
each step introducing uncertainty that can potentially affect the
reproducibility of inference. For example, a recent study found
that ML trees inferred by IQ-TREE and RAxML are more likely
to be the optimal ones when more extensive tree searches
are performed45. Examination of three representative phyloge-
nomic data sets showed that the percentages of genes that
produced reproducible phylogenies between two replicate
runs when using 20 tree searches were highly similar to
those when using 50 or 100 tree searches (Fig. 4), suggesting
that the observed irreproducibility is over and above the
uncertainty contributed by the heuristic nature of phylogenomic
inference.
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Fig. 3 Key differences between genes that yield irreproducible phylogenies and those that yield reproducible ones. Using IQ-TREE, 3515/19,414 (18.1%)
gene alignments from 15 phylogenomic data sets yielded irreproducible phylogenies between two replicates (red bars), while the remaining 15,899 (81.9%)
yielded reproducible phylogenies (yellow bars). Using RAxML-NG, 1813 (9.3%) genes yielded irreproducible phylogenies between two replicates (green
bars), while 17,601 (90.7%) yielded reproducible phylogenies (blue bars). For the sets of reproducible and irreproducible genes in IQ-TREE and RAxML-NG
analyses, a the normalized Robinson–Foulds tree distance (nRFD) between the gene trees inferred from the Run1 and Run2 replicates, b the absolute
difference in log-likelihood values between the Run1 and Run2 replicates, c the percentage of a number of parsimony-informative sites in gene alignment,
and d the percentage of Run1 and Run2 replicates executed on two separate 2-CPU nodes with different processor architectures (ML programs can
automatically detect the kernel instructions on current processor architecture to best exploit the capabilities of CPU processor). a, b The degree to which
the Run1 and Run2 trees of genes that yield irreproducible phylogenies differ in topology (a) and likelihood value (b). Irreproducible genes have a much
lower average percentage of parsimony-informative sites (c) and run much more frequently on two different processors (d) than reproducible genes.
Detailed values are given in Supplementary Data 2.
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Low phylogenetic informativeness, multithreading, and pro-
cessor type contribute to irreproducibility. To explore the
underlying causes of the observed irreproducibility, we compared
the characteristics of genes that yielded topologically irrepro-
ducible phylogenies (3515 in IQ-TREE and 1813 in RAxML-NG)
to those that yielded topologically reproducible phylogenies
(15,899 in IQ-TREE and 17,601 in RAxML-NG). We found that
genes with lower phylogenetic informativeness (quantified by the
percentage of parsimony-informative sites in gene alignment,
alignment length, and branch support values) were substantially
more likely to result in irreproducible phylogenies (Fig. 3c and
Supplementary Figs. 7–9).

Specifically, genes whose Run1 and Run2 trees were topolo-
gically different had lower percentages of parsimony-informative
sites (13% vs. 34% in IQ-TREE; 16% vs. 32% in RAxML-NG),
shorter gene alignments (556 sites vs. 844 sites in IQ-TREE;
427 sites vs. 830 sites in RAxML-NG) and lower overall average
bootstrap support values (58% vs. 71% in IQ-TREE; 25% vs. 50%
in RAxML-NG), compared to genes whose Run1 and Run2 trees
had the same topology (Fig. 3c and Supplementary Figs. 7, 8, and
9a). We further found that conflicting internal branches between
the Run1 and Run2 trees of genes that yielded topologically
irreproducible phylogenies received lower bootstrap support
values (26% vs. 67% in IQ-TREE; 5% vs. 38% in RAxML-NG)
than the congruent internal branches (Supplementary Fig. 9b). In
contrast, the number of taxa in gene alignments had little impact
on the irreproducibility of single-gene trees (Supplementary
Fig. 10).

Examination of architectures of CPU processors revealed that
genes run on two different types of processors (both programs
can automatically detect the kernel instructions on current
processor architecture to best exploit the capabilities of CPU
processor) were more likely to result in topologically irrepro-
ducible phylogenies (Fig. 3d and Supplementary Fig. 11).

To test whether multithreading contributes to phylogenetic
irreproducibility, we first assessed the reproducibility of single-
gene phylogenies from 3819 genes from three large representative
phylogenomic data sets on an increasing number of threads. We

found that execution of Run1 and Run2 one right after the other
on the same node yielded identical Run1 and Run2 tree
topologies for all 3819 genes examined in both programs (Fig. 5a
and Supplementary Data 4); we found the same result for both
programs when using one or two thread(s) on the same node and
for RAxML-NG when using up to five threads on the same node.
In contrast, analyses using 3–5 threads on the same node with IQ-
TREE yielded irreproducible single-gene trees for ~35.8% of 3819
genes (Fig. 5a, Supplementary Data 4). We obtained similar
results when we executed Run1 and Run2 on a single laboratory
server (Intel Xeon E5–2630 v3 @ 2.40 GHz processor with 16
threads) (Fig. 5b and Supplementary Data 4). These results
suggest that multithreading using 3 or more threads contributes
to irreproducibility in IQ-TREE but not in RAxML-NG.

The vast majority of phylogenomic analyses are performed
across multiple nodes on supercomputing clusters that employ
diverse processor types (rather than on the same node). To test
the effect of multithreading on phylogenetic irreproducibility in
this more realistic experimental design scenario, we executed
Run1 and Run2 on two separate compute nodes (i.e., each
analysis was run on a single node, but Run1 was executed on a
different node than Run2) using an increasing number of threads.
We found that the execution of Run1 and Run2 on two separate
nodes resulted in an average irreproducibility of ~16.7% when
using one or two thread(s) in IQ-TREE and RAxML-NG analyses
(Fig. 5c). Interestingly, irreproducibility increased more than two-
fold in IQ-TREE when using 3–5 threads (~35.8%), whereas
irreproducibility in RAxML-NG analyses remained at similar
levels (Fig. 5c and Supplementary Data 4). These results suggest
that: (1) multithreading, coupled with the use of different nodes,
is a major contributing factor to irreproducibility in IQ-TREE;
and (2) the use of different nodes, but not multithreading, is a
major contributing factor to irreproducibility in RAxML-NG.

Irreproducibility of coalescent- and concatenation-based phy-
logenomic inference. Since a considerable number of single genes
yielded different Run1 and Run2 tree topologies, we examined the
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single-gene phylogenetic trees in both programs. All gene trees, log files, and statistics of the results, are available on the figshare repository: https://doi.
org/10.6084/m9.figshare.11917770.
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Fig. 5 Variation in computing resources affects the irreproducibility of single-gene trees. Three large representative studies in animals (marine fishes:
1001 genes and 120 taxa from Alfaro et al.65), plants (green plants: 410 genes and 1178 taxa from 1KP Initiative66), and fungi (budding yeasts: 2408 genes
and 343 taxa from Shen et al.16) were used to examine the impact of threading and processor types on the reproducibility of gene phylogenies. Percentages
of the 3819 genes whose phylogenies are irreproducible when a we ran two replicates (Run1 and Run2) on a single node (the two replicates were run one
right after the other on the same node) on an increasing number of threads on the CHTC cluster using IQ-TREE (in yellow) and RAxML-NG (in blue),
respectively. Since running all 3819 genes on a single laboratory server was computationally intractable, we sampled the first 200 genes from each data
set. Percentages of these 600 genes when b we ran two replicates on a laboratory server (Intel Xeon E5–2630 v3 @ 2.40 GHz processor with 16 threads)
on an increasing number of threads using IQ-TREE (in yellow) and RAxML-NG (in blue), respectively. Percentages of the 3819 genes whose phylogenies
are irreproducible when c we ran two replicates (Run1 and Run2) on two separate nodes (i.e., each analysis was run on a single node, but Run1 was
executed on a different node than Run2) on an increasing number of threads on the CHTC cluster using IQ-TREE (in yellow) and RAxML-NG (in blue),
respectively. The irreproducibility of each gene was determined by comparing the topologies of single-gene trees generated by two replicates (Run1 and
Run2). These results suggest that multithreading, coupled with the use of different nodes, is a major contributing factor to irreproducibility in IQ-TREE and
that the use of different nodes, but not multithreading, is a major contributing factor to irreproducibility in RAxML-NG. Command lines and job submission
files are given in Supplementary Note 1. All gene trees, log files, and statistics of the results, are available on the figshare repository: https://doi.org/
10.6084/m9.figshare.11917770.
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coalescent-based ASTRAL species phylogenies reconstructed
from the Run1 and Run2 sets of individual gene trees inferred
using either IQ-TREE or RAxML-NG. We found that 9/15 (60%)
phylogenomic data sets produced topologically different
coalescent-based ASTRAL species phylogenies (Table 1 and
Supplementary Fig. 12). When considering both topology and
branch support values together, we found that 11/15 (73.3%)
phylogenomic data sets whose gene trees were inferred using IQ-
TREE and 13/15 (87%) data sets whose gene trees were inferred
using RAxML-NG yielded different coalescent-based ASTRAL
species phylogenies (i.e., nRFD > 0 and/or a number of internal
branches with different support value > 0).

To examine the effects of removing poorly supported
bipartitions from gene trees on the reproducibility of
coalescent-based ASTRAL species phylogenies, we next collapsed
branches with low bootstrap support values (≤50%) for Run1 and
Run2 gene trees, and then used these partially multifurcating
genes trees to infer coalescent-based ASTRAL species phyloge-
nies. We found that collapsing branches with low bootstrap
support values eliminated the irreproducibility of coalescent-
based ASTRAL species phylogenies for three and four phyloge-
nomic data sets when their gene trees were inferred by IQ-TEE
and RAxML-NG, respectively, but eight phylogenomic data sets
(IQ-TREE) and seven phylogenomic data sets (RAxML-NG) still

yielded topologically different ASTRAL species phylogenies
(Table 2). These results suggest that the observed irreproducibility
of coalescent-based ASTRAL species phylogenies remains even
after we account for low phylogenetic informativeness.

We also examined whether concatenation-based ML trees that
were inferred twice (Run1 and Run2) from the supermatrix using
either IQ-TREE or RAxML-NG with identical settings were
reproducible. We found that 15/15 phylogenomic data sets
produced topologically identical concatenation-based ML species
phylogenies (Table 1 and Supplementary Fig. 13). All phylogenomic
data sets analyzed by RAxML-NG yielded phylogenies whose
topologies, branch lengths, and branch support values were
identical between Run1 and Run2 replicates. In contrast, only 4/
15 (26%) phylogenomic data sets analyzed by IQ-TREE yielded
phylogenies whose topologies, branch lengths, and branch support
values were identical between Run1 and Run2 replicates. Whether
coalescent-based phylogenetic inference or concatenation-based
phylogenetic inference of species phylogenies is more reliable
continues to be debated46–48. These results suggest that species
phylogenies inferred using the coalescent-based approach, which
relies on separately estimated gene trees, are more likely to be
irreproducible than species phylogenies inferred using the
concatenation-based approach, which relies on the supermatrix of
gene alignments.

Table 2 Comparisons of coalescent-based ASTRAL species phylogenies with and without collapsing poorly supported
bipartitions in replicate gene trees.

Data set Program Without collapsing branches With collapsing branches

Conflicting bipartitions
(%)a

Highly conflicting
bipartitions (%)b

Conflicting bipartitions
(%)a

Highly conflicting
bipartitions (%)b

Animal: Bees IQ-TREE 22.46 1.87 18.18 1.60
Animal: Birds IQ-TREE 6.09 0 6.60 0
Animal: Butterflies IQ-TREE 7.35 0.49 5.39 0.74
Animal: Lizards IQ-TREE 7.69 0 0 0
Animal: Marine fishes IQ-TREE 7.69 0 13.68 0
Animal: Rodents IQ-TREE 0 0 0 0
Plant: Cardueae IQ-TREE 12.20 0 12.20 0
Plant: Caryophyllales IQ-TREE 0 0 0 0
Plant: Green plants IQ-TREE 5.70 0.38 5.53 0.55
Plant: Jaltomata IQ-TREE 8.33 0 0 0
Plant: Protea IQ-TREE 14.52 0 3.23 0
Fungi: Aspergillaceae IQ-TREE 0 0 0 0
Fungi: Budding yeasts IQ-TREE 0.29 0 0.29 0
Fungi: Hanseniaspora IQ-TREE 0 0 0 0
Fungi: Rhizoplaca IQ-TREE 3.57 0 0 0
Animal: Bees RAxML-NG 27.27 1.87 8.02 0
Animal: Birds RAxML-NG 4.06 0 0 0
Animal: Butterflies RAxML-NG 6.86 0.49 6.86 0
Animal: Lizards RAxML-NG 19.23 0 0 0
Animal: Marine fishes RAxML-NG 3.42 0 5.98 0
Animal: Rodents RAxML-NG 0 0 0 0
Plant: Cardueae RAxML-NG 12.20 0 3.66 0
Plant: Caryophyllales RAxML-NG 0 0 0 0
Plant: Green plants RAxML-NG 0.26 0 1.02 0.09
Plant: Jaltomata RAxML-NG 8.33 0 0 0
Plant: Protea RAxML-NG 14.52 0 8.06 0
Fungi: Aspergillaceae RAxML-NG 0 0 0 0
Fungi: Budding yeasts RAxML-NG 0.29 0 0.59 0
Fungi: Hanseniaspora RAxML-NG 0 0 0 0
Fungi: Rhizoplaca RAxML-NG 3.57 0 0 0

Since running all 19,414 gene alignments from 15 phylogenomic data sets was computationally intractable, we sampled the first 100 genes from each data set. For each data set, coalescent-based
ASTRAL trees were reconstructed from the Run1 and Run2 sets of 100 individual gene trees without and with collapsing branches with low bootstrap support values (≤50%); both Run1 and Run2 used
identical settings, including substitution model, random starting seed number, number of threads of execution, number of independent tree searches, number of bootstrap replicates, and ML program.
aPercentage of conflicting bipartitions between coalescent-based ASTRAL species phylogenies inferred using Run1 and Run2 gene trees.
bPercentage of highly conflicting bipartitions (LPP≥ 90%) between coalescent-based ASTRAL species phylogenies inferred using Run1 and Run2 gene trees.
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The genes that yield irreproducible phylogenies are more likely
to be incorrect. Since the true species and single-gene phylo-
genies for the 15 empirical phylogenomic data sets are unknown,
it is impossible to assess whether irreproducible phylogenies are
more or less similar to the true phylogeny than reproducible ones.
To address this question, we simulated DNA sequence alignments
on 15 balanced trees and 15 star trees, both with 64 taxa. Each
tree was scaled by branch length α (α= 0.001, 0.002, 0.003, 0.004,

0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.04, 0.06, 0.08, or
0.1), respectively; trees with larger α values had higher rates of
substitutions per site and, consequently, higher average numbers
of parsimony-informative sites (Fig. 6a, b). We then used each of
these 15 balanced and 15 star trees to simulate 500 nucleotide
sequence alignments that varied in length under the GTR+G4
model (detailed parameters are given in the file entitled “Seq_-
Gen_run.bat” on the figshare repository: https://doi.org/10.6084/
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Fig. 6 The topologies of genes yielding irreproducible phylogenies are more likely to be incorrect than those of genes yielding reproducible
phylogenies. To examine whether genes yielding irreproducible phylogenies were more likely to be incorrect than genes yielding reproducible phylogenies,
we simulated gene sequence alignments on 30 phylogenetic trees (15 balanced trees and 15 star trees with 64 taxa) that were scaled by branch length α
(where α= 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.04, 0.06, 0.08, or 0.1). Each phylogenetic tree was used to
simulate 500 nucleotide sequence alignments, varying randomly in length from 300 to 1000 base pairs using Seq-Gen under the GTR model (-mGTR -a1
-g4 -i0 -f0.25,0.25,0.25,0.25 -n1 -or). For each of the 15,000 sequence alignments (30 phylogenetic trees * 500 sequence alignments), we assessed its
reproducibility between two replicates (Run1 and Run2) on two separate nodes (i.e., each analysis was run on a single node, but Run1 was executed on a
different node than Run2) using two threads on the CHTC cluster. a Balanced species tree of 64 taxa. Lengths of all external branches and internal
branches are α and α/2, respectively. b The star species tree of 64 taxa is a balanced species tree with six zero-length internal branches near the root.
c Percentage of genes that yielded irreproducible phylogenies plotted against α value of reference tree used in the simulation. d Comparison of gene tree
estimation error between genes yielding irreproducible phylogenies and genes yielding reproducible phylogenies. Gene tree estimation error corresponds
to the normalized Robinson–Foulds tree distance (nRFD) between the inferred tree and the reference tree. Genes yielding irreproducible phylogenies are
colored in red and genes yielding reproducible phylogenies are colored in yellow when using IQ-TREE; genes yielding irreproducible phylogenies are colored
in green and genes yielding reproducible phylogenies are colored in blue when using RAxML-NG. This comparison shows the genes that generate
irreproducible phylogenies are more likely to be incorrect than genes that generate reproducible phylogenies. We observed a similar magnitude of gene
tree estimation error (even though irreproducibility for IQ-TREE was two-fold higher) when using three threads per node. The 15 balanced trees, the 15 star
trees, command lines, gene alignments, and gene trees, as well as statistics of the results, are available on the figshare repository: https://doi.org/
10.6084/m9.figshare.11917770.
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m9.figshare.11917770) using Seq-Gen.v1.3.249, generating a total
of 15,000 DNA sequence alignments.

Analysis of these 15,000 simulated DNA sequence alignments
showed that the percentage of genes yielding irreproducible
phylogenies decreased with increasing α values (Fig. 6c and
Supplementary Data 5), a result in agreement with the

observation from analysis of the 15 empirical phylogenomic data
sets that genes producing irreproducible phylogenies tended to
contain lower percentages of parsimony-informative sites
(Fig. 3c). By comparing the 60,000 gene trees (15,000 gene
alignments * 2 replicates * 2ML programs) against the reference
tree used to simulate each gene alignment, we found that the
6104/60,000 (10%) irreproducible gene trees have three times
higher average tree distance than the 53,896/60,000 (90%)
reproducible gene trees (irreproducible gene phylogenies: average
nRFD = 0.485 vs. reproducible gene phylogenies: average
nRFD = 0.147) when using two threads per node (Fig. 6d and
Supplementary Fig. 14). We observed a similar magnitude of gene
tree estimation error (even though irreproducibility for IQ-TREE
was two-fold higher) when using three threads per node
(irreproducible gene phylogenies: average nRFD = 0.483 vs.
reproducible gene phylogenies: average nRFD = 0.133) (Supple-
mentary Data 5).

Discussion
In this study, we found that ~9 to ~18% of single-gene phylo-
genies in 15 phylogenomic data sets were topologically irrepro-
ducible when analyzed by two widely used ML programs on a
supercomputing cluster (Figs. 1 and 2). In addition to sequence
alignment, program, substitution model, number of tree searches,
and random starting seed number, which are known contributors,
we further found that low phylogenetic informativeness, pro-
cessor type, and multithreading contribute to the observed irre-
producibility, with the effects of multithreading being program-
specific.

Why did genes with low phylogenetic informativeness (e.g., a
low percentage of parsimony-informative sites in gene alignment
or lower average bootstrap support) more frequently fail to
reproduce their topologies when running on different processor
types (i.e., on processors with different kernel instructions) than
highly informative genes (Fig. 3c, d and Supplementary Fig. 9a)?
To achieve optimal performance, both IQ-TREE and RAxML-NG
can automatically detect the kernel instruction on current pro-
cessor architecture50 to best exploit the capabilities of the CPU
processor. Therefore, different processor architectures can result
in otherwise identical replicates yielding different phylogenies
with different log-likelihood values. While these differences in
topology and likelihood are not generally sufficient to affect
reproducibility in genes with high phylogenetic informativeness
(Figs. 3c and 6c), our results suggest that they can have a dramatic
effect on genes with low phylogenetic informativeness (Fig. 6d).
Consistent with this explanation, irreproducibility was much
higher (25.2%) in the eight data sets constructed using ultra-
conserved element (UCE) capture51, Anchored Hybrid Enriched
(AHE) capture52, or conserved exon capture53 approaches, which
tend to generate short alignments of highly conserved gene
regions, than in the remaining seven studies (8.5%) (Supple-
mentary Data 1 and 2). More broadly, data sets constructed from
genes or regions of low phylogenetic informativeness and
approaches biased toward including such regions may be parti-
cularly vulnerable to irreproducibility.

In contrast, phylogenetic trees of gene alignments executed on
the same processor type (using one or two threads in IQ-TREE
and any number in RAxML-NG) are reproducible (Fig. 5a, b).
However, processor types vary both within, as well as between,
supercomputing clusters. Thus, even if a study specified the
processor type(s) used for inference, it may not always be
straightforward (especially when new generations of processor
types replace older ones) to reproduce results. Different con-
tainers (e.g., BIOS version, microarchitecture version, operating
system, compiler manufacturer) could potentially influence the
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Fig. 7 An overview of the reproducibility of phylogenetic inference. The
reproducibility of phylogenetic inference for eight specific scenarios: (I) The
data and standard parameter settings typically reported in publications,
including sequence alignment, program, substitution model, and a number
of tree searches are not publicly available. (II) Sequence alignment,
program, substitution model, and a number of tree searches are publicly
available, but the number of threads, random starting seed number, and
processor are not. (III) Sequence alignment, program, substitution model,
number of tree searches, number of threads, and processor are publicly
available, but random starting seed number is not. (IV) Sequence
alignment, program, substitution model, number of tree searches, and
random starting seed number are publicly available, but the number of
threads and processors are not. (V) Sequence alignment, program,
substitution model, number of tree searches, number of threads (3), and
random starting seed number are publicly available, but the processor is
not. (VI) Same scenario as V, but with two threads instead of three threads.
(VII) Sequence alignment, program, substitution model, number of tree
searches, number of threads (3), random starting seed number, and
processor are publicly available. (VIII) Same scenario as VII, but with two
threads instead of three threads. Analyses for each scenario utilized the
first 200 genes from each of three large representative studies in animals
(marine fishes: 1001 genes and 120 taxa from Alfaro et al.65), plants (green
plants: 410 genes and 1178 taxa from 1KP Initiative66), and fungi (budding
yeasts: 2408 genes and 343 taxa from Shen et al.16). Each gene’s
reproducibility of phylogenetic inference was assessed using two replicates
(Run1 and Run2) for IQ-TREE (in yellow) and RAxML-NG (in blue),
respectively. All analyses were performed on the CHTC cluster.
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compilation of ML program, further complicating reproducibility.
Although irreproducibility can be eliminated in RAxML-NG by
turning off the kernel auto-detection option (with the “–simd
none” command; the current version of IQ-TREE does not offer
this option), this results in substantially longer runtimes (average
2.4-fold increase in runtime; Supplementary Fig. 15).

Why did IQ-TREE have larger numbers of irreproducible
phylogenies when using three or more threads, even when run-
ning on the same processor type (Fig. 5a, b)? This is likely because
different orders of commutative addition of the per-site log-
likelihoods when using three or more threads in IQ-TREE could
result in two different phylogenies with different log-likelihood
values. Consistent with this explanation, irreproducibility in
RAxML-NG, which accounts for the difference of addition orders
of the per-site log likelihoods54,55, is not influenced by the use of
three or more threads on the same processor (Fig. 5a, b).

Many previous studies have shown that most published gene
alignments used to infer phylogenetic trees are inaccessible or
have been permanently lost22,24,26–30, effectively rendering these
trees irreproducible (scenario I; Fig. 7). These studies have con-
vincingly shown that the availability of gene alignments, phylo-
genetic trees, and key parameter settings (e.g., substitution model,
number of tree searches, random starting seed number) can
greatly improve the reproducibility of phylogenetic inference
(scenario II; Fig. 7). The random starting seed number is a well-
known contributor to uncertainty in tree inference in heuristic
searches (scenarios III and IV; Fig. 7). Our study further shows
that reproducibility of single-gene ML tree is also affected by
processor type and multithreading, sometimes in a program-
specific way (scenarios V–VIII; Fig. 7). Comparison of these
scenarios allows assessment of the relative contribution of dif-
ferent parameters to irreproducibility. For example, a comparison
of scenario III in Fig. 7, where all parameters except random
starting seed number are identical between Run1 and Run2,
against scenario IV, where all parameters are identical between
the two replicates except a number of threads and processor,
shows that random starting seed number differences lead to much
lower reproducibility than differences in architecture and number
of processors.

What is the impact of the single-gene tree and species tree
irreproducibility that we observed in ML analyses in phylogenetic
inference in general? The observed differences in the topologies of
single-gene ML trees between replicate analyses were not trivial.
At the level of single genes, we found that a considerable fraction
of single-gene trees were different in their topologies between two
runs with identical settings (Figs. 1 and 2), often significantly so
(Supplementary Fig. 4), which could change the outcomes of
analyses from phylogenetic programs that employ single-gene
phylogenetic trees, such as ASTRAL56,57, ModelTest-NG58,
Notung59, and OrthoFinder60.

At the level of phylogenomic inference, we found that the use
of Run1 or Run2 gene trees was sufficient to change the ASTRAL
species phylogeny inferred under a coalescent-based framework
for several phylogenomic data sets (Tables 1 and 2). Importantly,
collapsing of branches with low bootstrap support in individual
gene trees reduced irreproducibility in species tree inference
(Table 2). It is also important to emphasize that while IQ-TREE
and RAxML-NG are widely used maximum likelihood programs,
they are not the only ones. Whether other ML programs, such as
FastTree61, GARLI62, MEGA63, and PhyML64, also exhibit irre-
producibility, whether irreproducibility extends for other
approaches, such as parsimony or Bayesian inference, and the
impact of the observed irreproducibility in phylogenetic biology
in general, are all topics that deserve further examination.

How can we increase the reproducibility of phylogenetic
inference? One potential solution would be the mandatory

reporting of not only sequence alignment (see also the recent
commentary by Salomaki et al.23), program, substitution model,
and number of independent tree searches, but also of random
starting seed numbers, number of threads, and processor type
used (Supplementary Note 2). However, the benefits need to be
weighed against the practical difficulty of implementing this
solution for the hundreds or thousands of gene alignments pre-
sent in current phylogenomic data sets. Moving forward, a more
practical alternative may be the releasing of the log file of each
analysis, which contain a record of the values of all these key
parameters (e.g., alignment, program name, number of tree
searches, substitution model, type of processor, number of
threads, and random starting seed).

Methods
Empirical phylogenomic data sets. To assess the reproducibility of phylogenetic
trees generated by individual genes, we retrieved 19,414 gene alignments from 15
phylogenomic studies in animals (6), plants (5), and fungi (4) (Supplementary
Data 1). These 15 data sets were constructed using five widely accepted gene
sampling approaches: Ultraconserved Element (UCE) capture, Anchored Hybrid
Enriched (AHE) capture, conserved exon capture, transcriptome sequencing, and
whole-genome sequencing. The 15 data sets comprise non-coding DNA (DNA),
exon (DNA), and amino acid (AA) sequence alignments. The number of genes in
these data sets ranges from 259 to 6431 with an average value of 1294; their number
of taxa ranges from 15 to 1178 with an average value of 181. Finally, we note that
this set of 15 data sets includes the largest available phylogenomic data sets in
animals (Marine fishes: 1001 genes and 120 taxa from Alfaro et al.65), plants
(Green plants: 410 genes and 1178 taxa from 1KP Initiative66), and fungi (budding
yeasts: 2408 genes and 343 taxa from Shen et al.16). All gene alignments in FASTA
form can be found on the figshare repository: https://doi.org/10.6084/m9.
figshare.11917770.

Assessment of reproducibility of single-gene phylogenetic trees. Irreprodu-
cibility may manifest itself as a failure to reproduce published experiments (one’s
own experiments or ones performed by others). Assessing the reproducibility of
published analyses in phylogenetics is extremely challenging because most pub-
lished studies do not report the specific settings for key parameters (e.g., random
starting seed number, number of threads of execution). Therefore, we focused on
assessing whether we could reproduce our own results. Specifically, for each of
19,414 gene alignments, we utilized two replicates (Run1 and Run2) to assess
whether the phylogenetic tree inferred by Run1 is topologically identical to the tree
inferred by Run2 (Fig. 1). To take into account variation that may stem from
different tree rearrangement algorithms used in heuristic searches, we used both
the NNI-based IQ-TREE multi-thread version 1.6.831 and the SPR-based RAxML-
NG multi-thread version 0.9.032 were used to infer a single-gene ML tree.

For nucleotide sequence alignments, we used the GTR+G4+ F substitution
model; for amino acid sequence alignments, we used the best-fitting substitution
model reported in the original study, which can be found on the figshare
repository: https://doi.org/10.6084/m9.figshare.11917770. The two replicates used
exactly the same parameter settings on the ML program used for inference,
including gene alignment, program, substitution model, random starting seed
number, number of threads (2), number of tree searches (20), and log-likelihood
epsilon for optimization (0.0001).

Below are two specific examples of the specific command line instructions and
parameter settings for the two replicates (Run1 and Run2) in IQ-TREE and
RAxML-NG for a DNA sequence alignment (dna.fasta) and an amino acid
alignment (aa.fasta):

DNA sequence alignment (dna.fasta):
iqtree -s dna.fasta -st DNA -m GTR+G4+ F -seed 4760742 -nt 2–runs 20 -me

0.0001 -pre iqtree_dna_Run1
iqtree -s dna.fasta -st DNA -m GTR+G4+ F -seed 4760742 -nt 2–runs 20 -me

0.0001 -pre iqtree_dna_Run2
raxml-ng–msa dna.fasta–search -msa-format FASTA–model GTR+G4+ F

-seed 967956542–threads 2–tree pars{10},rand{10}–lh-epsilon 0.0001–prefix raxml-
ng_dna_Run1

raxml-ng–msa dna.fasta–search -msa-format FASTA–model GTR+G4+ F
-seed 967956542–threads 2–tree pars{10},rand{10}–lh-epsilon 0.0001–prefix raxml-
ng_dna_Run2

Amino acid alignment (aa.fasta):
iqtree -s aa.fasta -st AA -m LG+G4 -seed 529418945 -nt 2–runs 20 -me 0.0001

-pre iqtree_aa_Run1
iqtree -s aa.fasta -st AA -m LG+G4 -seed 529418945 -nt 2–runs 20 -me 0.0001

-pre iqtree_aa_Run2
raxml-ng–msa aa.fasta–search -msa-format FASTA–model LG+G4 -seed

652954101–threads 2–tree pars{10},rand{10}–lh-epsilon 0.0001–prefix raxml-
ng_aa_Run1
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raxml-ng–msa aa.fasta–search -msa-format FASTA–model LG+G4 -seed
652954101–threads 2–tree pars{10},rand{10}–lh-epsilon 0.0001–prefix raxml-
ng_aa_Run2

Overall, we executed 77,656 jobs (19,414 alignments * 2 replicates * 2ML
programs). Each job was run on a single node with 2 threads and 1 GB RAM on the
Center for High-Throughput Computing (CHTC) at the University of Wisconsin-
Madison (see command lines and job submission file in the Supplementary
Note 1). In addition to the CHTC, we also ran these 77,656 jobs on the Advanced
Computing Center for Research and Education (ACCRE) at Vanderbilt University.

All our tree topology comparisons used the normalized Robinson–Foulds37 tree
distance (nRFD), which we calculated using RAxML, version 8.2.367 (see command
lines in Supplementary Note 1). For a given gene alignment, we considered that its
tree was reproducible if the trees inferred from two replicates (Run1 and Run2)
were topologically identical (i.e., nRFD = 0); in contrast, we considered the
inferred tree irreproducible if the gene trees inferred from two replicates (Run1 and
Run2) were topologically different from each other (i.e., nRFD > 0). Note that the
reproducibility of each single-gene ML tree was only assessed by the same ML
program (IQ-TREE or RAxML).

Assessment of reproducibility of coalescent- and concatenation-based spe-
cies trees. For each of the 15 phylogenomic studies, we reconstructed their
coalescent-based species trees from four sets of individual gene trees (iqtree_run1,
iqtree_run2, raxml:ng_run1, and raxml:ng_run2) with ASTRAL version 5.6.356,57.
The reliability of each internal branch was evaluated using local posterior
probability (LPP).

For a given phylogenomic study Bee, we obtained four sets of gene trees:
Bee_iqtree_run1.genetrees, Bee_iqtree_run2.genetrees, Bee_raxml-ng_run1.
genetrees, and Bee_raxml-ng_run2.genetrees. We used these four set to calculate
their species trees using the following commands:

java -jar astral.jar -i Bee_iqtree_run1.genetrees -o Bee_iqtree_run1_lpp.tree
java -jar astral.jar -i Bee_iqtree_run2.genetrees -o Bee_iqtree_run2_lpp.tree
java -jar astral.jar -i Bee_raxml-ng_run1.genetrees -o Bee_raxml-ng_run1_lpp.tree
java -jar astral.jar -i Bee_raxml-ng_run2.genetrees -o Bee_raxml-ng_run2_lpp.tree
Concatenation-based ML trees were inferred twice (Run1 and Run2) from the

supermatrix using either IQ-TREE or RAxML-NG with identical settings. The
reliability of each internal branch was evaluated using 1000 ultrafast bootstrap
replicates and 100 standard bootstrap replicates for IQ-TREE analysis and RAxML-
NG, respectively. Below are two specific examples of the specific command line
instructions and parameter settings for the two concatenation replicates (Run1 and
Run2) in IQ-TREE and RAxML-NG for a DNA sequence alignment (dna.fasta)
and an amino acid alignment (aa.fasta):

DNA sequence alignment (dna.fasta):
iqtree–runs 1 -nt 10 -st DNA -seed 369284957 -me 0.0001 -s dna.fasta -m GTR

+G4+ F -bb 1000 -pre iqtree_dna_Run1
iqtree–runs 1 -nt 10 -st DNA -seed 369284957 -me 0.0001 -s dna.fasta -m GTR

+G4+ F -bb 1000 -pre iqtree_dna_Run2
raxml-ng–force–all–threads 10–lh-epsilon 0.0001–seed 369284957–tree pars

{1}–msa dna.fasta -msa-format FASTA–model GTR+G4+ F–bs-trees 100–prefix
raxml-ng_dna_Run1

raxml-ng–force–all–threads 10–lh-epsilon 0.0001–seed 369284957–tree pars
{1}–msa dna.fasta -msa-format FASTA–model GTR+G4+ F–bs-trees 100–prefix
raxml-ng_dna_Run2

Amino acid alignment (aa.fasta):
iqtree–runs 1 -nt 10 -st AA -seed 369284957 -me 0.0001 -s aa.fasta -m LG+G4

-bb 1000 -pre iqtree_aa_Run1
iqtree–runs 1 -nt 10 -st AA -seed 369284957 -me 0.0001 -s aa.fasta -m LG+G4

-bb 1000 -pre iqtree_aa_Run2
raxml-ng–force–all–threads 10–lh-epsilon 0.0001–seed 369284957–tree pars

{1}–msa aa.fasta -msa-format FASTA–model LG+G4–bs-trees 100–prefix raxml-
ng_aa_Run1

raxml-ng–force–all–threads 10–lh-epsilon 0.0001–seed 369284957–tree pars
{1}–msa aa.fasta -msa-format FASTA–model LG+G4–bs-trees 100–prefix raxml-
ng_aa_Run2

Note that for the larger phylogenomic data sets (e.g., green plants: 410 genes
and 1178 taxa from 1KP Initiative66; and budding yeasts: 2408 genes and 343 taxa
from Shen et al.16), we used 32 threads instead of 10 threads (detailed parameters
can be found in the log files on the figshare repository: https://doi.org/10.6084/m9.
figshare.11917770).

Impact of multithreading and processor types on gene tree reproducibility.
When the number of threads is not specified, IQ-TREE will automatically determine
the best number of threads on the processor according to the length of the gene
alignment and RAxML-NG will use all of the available cores on the processor. In
addition, IQ-TREE and RAxML-NG can automatically detect the best kernel
instruction on processor architecture to optimize the performance of the tree search,
but different types of processor architectures can result in different kernel instructions.
Therefore, we investigated whether increasing the number of threads and using dif-
ferent processor types affect the reproducibility of gene trees inferred by IQ-TREE and
RAxML-NG. Because these analyses are computationally demanding, we performed
them using a set of 3819 gene alignments from three large representative studies in

animals (marine fishes: 1001 genes65), plants (green plants: 410 genes66), fungi
(budding yeasts: 2408 genes16). Specifically:

(i) For each of the 3819 gene alignments, two replicates (Run1 and Run2) were
submitted to a single node (two replicates ran one right after the other on
the same node) for 1, 2, 3, 4, and 5 thread(s), respectively. The total number
of jobs executed on the CHTC cluster was 38,190 (3819 genes * 1 node (it
contains 2 replicates) * 5 threading data points * 2ML programs) (see
command lines and job submission file in Supplementary Note 1).

(ii) Since the analysis of phylogenomic data sets on a laboratory server is
computationally intractable, we sampled the first 200 genes from each of the
three data sets. For each of these 600 gene alignments, we ran two replicates
(Run1 and Run2) on a laboratory server (Intel Xeon E5–2630 v3 @ 2.40
GHz processor with 16 threads) for 2 and 3 threads, respectively. All 3600
analyses (600 genes * 2 replicates * 2 threading data points * 2ML
programs) were executed one right after the other on the server.

(iii) For each of the 3819 gene alignments, two replicates (Run1 and Run2) were
submitted to two separate nodes (i.e., each analysis was run on a single node,
but Run1 was executed on a different node than Run2) for 1, 2, 3, 4, and 5
thread(s), respectively. The total number of jobs executed on the CHTC
cluster was 76,380 (3819 genes * 2 nodes (each contains 1 replicate) * 5
threading data points * 2ML programs) (see command lines and job
submission file in Supplementary Note 1).

Using simulated data to examine the accuracy of gene tree estimation for
genes that yield irreproducible phylogenies. To investigate the accuracy of gene
tree estimation for genes whose phylogenies are irreproducible, we first generated
15 balanced trees and 15 star trees, both with 64 taxa, each of which was scaled by
branch length α (α= 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009,
0.01, 0.02, 0.04, 0.06, 0.08, or 0.1) (Fig. 6a, b), respectively. Next, each reference
species tree of 64 taxa was used to generate 500 nucleotide gene alignments with
varying length (randomized to be between 300 and 1000 base pairs) using Seq-Gen.
v1.3.249 under the GTR+G4 model, shape for the gamma rate heterogeneity =1,
proportion of invariable sites=0, and equal state frequency (-mGTR -a1 -g4 -i0
-f0.25,0.25,0.25,0.25 –l random length -n1 –z random seed) (detailed parameters
are given in the file entitled “Seq_Gen_run.bat” on the figshare repository: https://
doi.org/10.6084/m9.figshare.11917770).

For each simulated gene alignment, two replicates (Run1 and Run2) were
executed on two separate nodes (i.e., each analysis was run on a single node, but
Run1 was executed on a different node than Run2) using 2 threads on the CHTC
cluster. Reproducibility of the resulting gene trees of the two replicates was assessed
with RAxML, version 8.2.3. Furthermore, we calculated gene tree estimation error
as the average of the nRFD values between each of the Run1 and Run2 gene trees
and the reference species tree.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All gene alignments, gene trees, log files, and command lines, as well as summary and
statistics of the runs, are available on the figshare repository: https://doi.org/10.6084/m9.
figshare.11917770.
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